幂函数2^n算法(蛮力迭代版)、(优化递归版)

本文探讨了在不允许使用位移运算的情况下,如何计算2^n。首先介绍了采用蛮力迭代法实现的算法,然后重点阐述了优化递归算法,通过分析n的奇偶性来提高效率,展示了两种方法的不同之处和优化递归版的优势。
摘要由CSDN通过智能技术生成

问题描述:

             在禁止超过1位的位移运算的前提下,对任意非负整数n,计算2^n

蛮力迭代版:

// 在禁止超过1位的位移运算的前提下,对任意非负整数n,计算2^n
#include <stdio.h>
int main()
{
	int n = 5;
	int pow = 1;      //将累积器初始化为1 
	while (0 < n--)
	{
		pow <<= 1;    //O(1)将累积器翻倍 
	}
	printf("%d\n",pow); 
	return 0;
} 
运行结果:

32


--------------------------------
Process exited with return value 0
Press any key to continue . . .


优化递归版:

主要算法:

             ① n = 0        ② n为奇数           ③n为偶数

//  幂函数 2^n算法(优化递归版)
#include <stdio.h>

inline int sqr(int a){ return a * a; } 
int power2(int n)
{
	if (0 == n)
		return 1;     //   奇数                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值