[DP动归]-HDU-4405-动态规划的期望计算

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4405传送

题目描述:

玩耍飞行棋,扔骰子前进,棋盘上有若干“航线”,比如3→5,能让你从3直接到5,给出终点N,问从0到N所需步数的期望。

解题思路:

第一次做数学期望相关的题,所以这道题还是很典型很有教育意义的,我一开始选择了这样的做法:第一个点的期望值是1,也就是说只要一步肯定能到1点,到2的期望值则是“1/6*2+5/6”类似往后推了几个,没发现什么规律,觉得有些蛋疼。。后来看了网上的题解发现,这样的题其实是从终点开始查的,N点的期望值是0,也就是说不用走已经到了。N-1点的期望值呢则是1,N-2点是(1+1/6*dp[N-1]),依次推算到N-7点就变成了(1/6*dp[N-1]+1/6*dp[N-2]+1/6*dp[N-3]+1/6*dp[N-4]+1/6*dp[N-5]+1/6*dp[N-6]+1),加一是因为毕竟多走一步,这点一开始我没理解,觉得想不通的话就把加一写进公示的括号里面,提出来之后发现是一样的,好吧~接下来全是1/6了。琢磨了一天,被航神一语点破啊。

这几个博客很有帮助:

讲数学期望的——http://kicd.blog.163.com/blog/static/126961911200910168335852/传送

一个详细的题解——http://blog.csdn.net/qiqijianglu/article/details/8007941传送

全期望公式:http://zh.wikipedia.org/wiki/%E5%85%A8%E6%9C%9F%E6%9C%9B%E5%85%AC%E5%BC%8F

全概率公式:http://zh.wikipedia.org/wiki/%E5%85%A8%E6%A6%82%E7%8E%87%E5%85%AC%E5%BC%8F

AC代码

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

typedef struct node
{
    double dp;
    int way;
};

int N,M;
node arr[100050];

void input()
{
    int i,from,to;
    memset(arr,0,sizeof(arr));
    for(i=1;i<=M;i++)
    {
        scanf("%d%d",&from,&to);
        {
            arr[from].way=to;
        }
    }
}

int main()
{
    int i,j;
    while(scanf("%d%d",&N,&M),N||M)
    {
        input();
        arr[N].dp=0;
        for(i=N-1;i>=0;i--)
        {
            if(arr[i].way!=0)
                arr[i].dp=arr[arr[i].way].dp;
            else
            {
                arr[i].dp=0;
                for(j=i+1;j<=i+6&&j<=N;j++)
                {
                    arr[i].dp+=arr[j].dp/6.0;
                }
                arr[i].dp+=1;
            }
        }
        printf("%.4lf\n",arr[0].dp);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值