1.任务内容:
- 集成学习的概念
- 个体学习器的概念
- boosting bagging的概念、异同点
- 理解不同的结合策略(平均法,投票法,学习法)
- 随机森林的思想
- 随机森林的推广
- 随机森林的优缺点
- 随机森林在sklearn中的参数解释
- 随机森林的应用场景
2.随机森林的优缺点:
优点:
训练速度快
在创建随机森林的时候,对generlization error使用的是无偏估计
它能够处理很高维度(feature很多)的数据,并且不用做特征选择
避免过拟合现象
可以作为一种特征选择的工具,输出变量的重要性排序
缺点:
随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合
对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的。