题意:给你一个无向图,问至少添加几条边能够使两点之间至少有两条边不重复的路(也就是形成一个双连通图)
思路:先求割边,然后把割边“删除”,把各个点标记为相应的双连通分量,缩点,然后把割边连上,形成一棵树,判断每个节点的度,统计度为1的节点,(ans + 1)/2就是答案
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<stack>
#include<vector>
using namespace std;
const int maxn = 1100;
const int maxm = 4000;
int sum;
int t,top;
int node[maxn];
stack<int>s;
struct Side{
int u,v,next;
}side[maxm];
void add_side(int u,int v){
side[top] = (Side){u,v,node[u]};
node[u] = top ++;
}
int vis[maxn],low[maxn],dfn[maxn];
int n,m;
int tot,done[maxn];
int deg[maxn];
bool mm[maxn][maxn];
vector<int>vec;
void dfs(int u,int fa){
vis[u] = 1;
dfn[u] = low[u] = t ++;
for(int i = node[u];i != -1;i = side[i].next){
int v = side[i].v;
if(v != fa && vis[v] == 1)
low[u] = min(low[u],dfn[v]);
if(vis[v] == 0){
dfs(v,u);
low[u] = min(low[u],low[v]);
if(low[v] > dfn[u]){
mm[u][v] = mm[v][u] = true;
vec.push_back(i);
}
}
}
vis[u] = 2;
}
void init(){
vec.clear();
memset(node,-1,sizeof(node));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(done,0,sizeof(done));
memset(deg,0,sizeof(deg));
memset(mm,0,sizeof(mm));
t = top = sum = tot = 0;
}
void haha(int u){
done[u] = tot;
for(int i = node[u];i != -1;i = side[i].next){
int v = side[i].v;
if(mm[u][v] == false && done[v] == 0)haha(v);
}
}
int main(){
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&m)){
init();
while(m--){
int a,b;
scanf("%d%d",&a,&b);
add_side(a,b);
add_side(b,a);
}
for(int i = 1;i <= n;i ++)
if(!dfn[i])dfs(i,-1);
for(int i = 1;i <= n;i ++)
if(!done[i]){
tot++;
haha(i);
}
for(int j = 0;j < vec.size();j ++){
int i = vec[j];
int u = done[side[i].u];
int v = done[side[i].v];
deg[u] ++;deg[v] ++;
}
int ans = 0;
for(int i = 1;i <= tot;i ++){
if(deg[i] == 1)ans ++;
}
if(ans == 1)cout<<0<<endl;
else cout<<(ans+1)/2<<endl;
}
return 0;
}