Bias and Variance

一张比较经典的图[1]:

 

数学推导:

objective=E[(y-\^y)^2]

=[E(\^y^2)-E^2(\^y)]+[y^2-2yE(\^y)+E^2(\^y)]

=E[(\^y-E(\^y))^2]+(y-E(\^y))^2

=D(\^y)+(y-E(\^y))^2

第一项是Variance, 第二项是Bias(\^y=f(x),即分类器的预测)

[1] https://blog.csdn.net/wuzqChom/article/details/75091612

 

一个经典的问题:boosting降低Bias,而bagging(例如RF)降低Variance[2]。

1.

boosting例如Adaboost,GBDT,其第i个子分类器的训练依赖于第i-1个分类器的结果:

loss=L(y,F_{i-1}(x)+af_i(x))

where, F_m(x)=\sum _i a_if_i(x)

具体的,例如Adaboost使用了指数损失函数L(y,f(x))=exp(-yf(x))

这样的依赖关系导致了子分类器之间相关程度高

2. 

bagging例如RF,每个子分类器重采样训练集,随机选则特征集的子集。使得子分类器之间相关程度变低。

从公式来理解以上两个情况,有n个分类器fi(x):

 

对于Bias:

对于bagging来说:E(F_n(x))=E(\frac{1}{n} \sum _if_i(x))=E(f_i(x)),即取算术平均后基本不会改变Bias。

而对于Boosting来说其取加权平均,可以减小Bias。

 

对于Variance:

先选取两种极端情况进行讨论

若各个分类器相互独立,则D(F_m(x))=\frac{1}{m}D(f_i(x))

反之,D(F_m(x))=D(f_i(x))

因此,对于Bagging来说,分类器间相关程度低,有利于减小Variance,而Boosting却无法做到这一点。

 

[2] https://www.zhihu.com/question/26760839

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值