- 博客(7)
- 收藏
- 关注
原创 第 6 章:亚像素运动估计实战
摘要:亚像素运动估计(FME)在HEVC编码器中用于提升运动向量精度,通过插值计算非整数位置像素值来优化预测残差。与整像素运动估计不同,FME采用多级流水线设计:FME_Load准备参考数据,FME_Search计算候选位置失真代价,FME_Compare选择最优向量。该过程使用精心设计的FIR插值滤波器,在有限搜索空间内精细化运动向量,显著提升编码效率。工程实现中通过数据预加载和计算解耦来优化性能,使FME成为HEVC帧间预测的关键环节。
2026-01-06 17:31:28
636
原创 第5章:帧间预测与整运动估计实战
HEVC帧间预测与整像素运动估计实现 摘要:本文深入探讨HEVC帧间预测的核心机制与工程实现。帧间预测作为视频压缩的关键环节,通过整像素运动估计(IME)在参考帧中寻找最佳匹配块。不同于简单搜索,IME被嵌套在RDO决策框架中,需考虑多参考帧、AMVP预测和动态搜索策略。TZSearch算法通过分阶段搜索(起始点检查、栅格搜索、局部优化)平衡精度与效率。硬件实现采用两级加法树、PE阵列等优化结构,通过数据重用和提前终止降低30%功耗。文章包含Python实现的TZSearch和AMVP模拟代码,展示了从理论
2025-12-31 13:38:36
556
原创 第4章:帧内预测35种模式的选择与快选策略
摘要: 本章深入解析HEVC帧内预测技术,重点阐述37种预测模式(35种角度+DC/Planar)及其参考像素处理机制。相比H.264的9种模式,HEVC显著提升纹理捕捉能力,但带来巨大计算负担。文章详细拆解预测流程,包括参考像素获取、预测机制和模式决策,并重点分析生产级优化策略(RMD粗选+MPM+RDO精选)。通过四阶段筛选,可在质量损失<1%情况下提速5-10倍。最后介绍大厂基于边缘检测和机器学习的进阶优化方案,实现更优的速度-质量平衡。
2025-12-30 16:27:08
898
原创 第3章:CTU与CU划分
HEVC通过引入CTU(最大64x64)和CU四叉树递归划分机制,显著提升了编码效率。CTU被划分为不同大小的CU(64x64至8x8),通过PU和TU进一步细化预测和变换处理。核心决策采用率失真优化(RDO)评估拆分代价,公式为J=D+λ·R。工程实践中通过早停、剪枝等优化策略(如平坦块早停、深度限制)可大幅降低计算复杂度(提速40%以上)。这种灵活划分机制是HEVC相比H.264的关键创新,但同时也带来了计算复杂度的显著增加。
2025-12-29 18:50:07
482
原创 第2章:HEVC编码流程拆解
HEVC编码流程拆解与优化 摘要:本章详细解析HEVC编码流程,包括预测(帧内/帧间)、变换量化、熵编码和环路滤波等核心模块。重点分析了预测模块的35种帧内模式选择和运动估计优化方法,以及变换量化中QP参数的调节技巧。针对熵编码瓶颈,探讨了CABAC的串行特性及优化方案。通过代码示例和工程实践建议(如快速搜索算法、自适应QP等),为开发者提供可直接应用的优化手段,帮助实现编码器性能提升。
2025-12-26 17:41:21
419
原创 第1章:HEVC为什么强?
在讨论 HEVC(H.265)的任何技术细节之前,必须先回答一个现实问题:如果你只从标准角度理解 HEVC,很容易得出一个简单结论:压缩效率更高,是 H.264 的自然继任者。但如果你从工程视角回看过去十年的产业实践,会发现另一条主线:HEVC 的问题从来不是“能不能压得更好”,而是“值不值得”。本章的目标,不是讲工具,而是帮助你建立正确的工程预期。这将直接影响你后续对每一个 HEVC 技术点的理解方式。H.264 的成功,并不只是因为它压缩率高,而是因为它在工程维度上达成了极其罕见的平衡:在多年工程实
2025-12-26 16:13:07
751
原创 如何理解梯度下降?
最直接的方法是通过计算导数找到极值点,但对于代价函数只包含一个或者几个变量时,直接计算导数获取极值点也许可行,但是对于神经网络而言,通常需要处理的变量数量是天量的,大型神经网络的代价函数包含了数十亿个权重和偏置,而且这些关系非常复杂,用微积分来计算代价函数是不可行的。我们做一个想象实验:假设我们拿一个小球从碗的某个边沿释放,那么小球经过多次的来回滚动后一定会停在碗的底部,也就是最低点,也称为全局最优点。将代价函数简化为与两个变量相关有助于我们理解梯度下降,两个变量的代价函数是一个。梯度下降的底层逻辑是。
2025-05-14 16:07:06
677
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅