题目:
黑板上写下50个数字,选两个黑板上数字a和b,在黑板写|b-a|,剩下的数字?
解答:两个推论
1.剩下的数字是奇数
2.剩下的数字可以是1-50中的任意奇数(对于任意奇数,需要找出一种擦除序列,使得剩余该奇数)
----------------------------------------------------------------------------------------------------------------------------------------
1. 假设1~n个数,和为S(n),经过一遍擦除后剩余n-1个数,计其和为S(n-1),假设在该遍擦除时取出来的两个数为a1和b1,并且a1 > b1,则有
S(n-1) = S(n) - a1 -b1 + (a1 - b1) = S(n) - 2b1;
由此可以推导出S(1) = S(n) - 2(b1 + b2 + ... + bn-1),后面的为偶数,则最后的S(1)取决于S(n),因为S(50) 为奇数,所以最后的数字一定为奇数。
2. 设m为任意1-50内的奇数,则对于序列
1, 2, 3, ..., m, m+1, ... 50
以m +1 作为分割点,将整个序列分成两部分。因为m为奇数,所以m+1为偶数,对m+1分两种情况讨论
(a) m+1 为4的倍数,则 m+1 = 2k,且k为偶数
右端的 m+2,...,50共有 50 - (m+2) + 1 = 50 - 2k 个连续数,注意连续很重要。
对于 50-2k 个连续数,相邻的两个做擦除操作可以得到 25 -k 个1,因为k为偶数,所以有奇数个1,擦除这奇数个1 可以剩余一个1,即序列右端只剩下了一个1.
对于左端序列,1,..., m-1, m, m+1,首先拿m+1跟m-1做擦除,得到2,注意此刻整个序列剩余
1, 2, 3, ... ,m-2, m, 2 (m+1跟m-1擦除得到), 1(右端序列擦除剩余的那个1)
对1, 2, 3, ... ,m-2,共有 m-2 = 2k - 3 个数, 为了保持是偶数个,将1剔除,此时序列为2, 3, 4, ... ,m-2 总共 2k -4 个数,同样进行相邻数擦除,得到 k-2 个1,k为偶数,所以最后剩余未0。最终序列为
1, 0, m, 2, 1
按照从右到做的顺序(排除m)做擦除,剩余0,m,得到擦除结果m
(b) m+1 不是4的倍数,则m+1 = 2k,且k为奇数
同样以m+1作为序列分割点,右端的 m+2,...,50共有 50 - (m+2) + 1 = 50 - 2k 个连续数,擦除得到25-k个1,因为k为奇数,所以偶数个1擦除得到0。
对于左端序列,1,..., m-1, m, m+1,首先拿m+1跟m-1做擦除,得到2,此刻整个序列剩余
1, 2, 3, ... ,m-2, m, 2, 0
序列为2, 3, 4, ... ,m-2 总共 2k -4 个数,同样进行相邻数擦除,得到 k-2 个1,k为奇数,所以最后剩余未1。最终序列为
1, 1, m, 2, 0
按照从右到做的顺序(排除m)做擦除,剩余0,m,得到擦除结果m
综合以上两步,可以证明对于任意奇数m,都存在一个擦除序列使得最后剩余m,具体擦除方法如上分析。