机器学习
文章平均质量分 69
Genlovy_Hoo
这个作者很懒,什么都没留下…
展开
-
群体优化算法工具箱分享(GA、PSO、CS、GWO、WOA、HHO)
群体优化算法python工具箱分享(GA、PSO、CS、GWO、WOA、HHO),持续更新…之前在学校写论文的时候各种群体优化算法用得挺多的,工作之后虽然没怎么用了,不过这类算法在优化一些算法超参数的时候还是比较有用的,比如优化SVM。。。准备空闲的时候将这类算法整合成一个工具箱方便使用,目前写好了GA、PSO、CS、GWO、WOA、HHO,后续有空更新其他算法。工具箱为每个优化算法提供统一的参数接口,因此使用的时候只需要关注自己的目标函数即可。使用仅需四个步骤:1、定义目标函数;2、设置目标函数待优原创 2021-01-17 22:33:26 · 7839 阅读 · 5 评论 -
Apriori学习笔记(原理总结和Python实现)
Apriori学习笔记(原理总结和Python实现)关联规则分析(挖掘)用于发现项目或项目集合之间可能存在的关联模式(或因果结构),如“由于某些事件的发生而引起另外一些事件的发生”之类的规则。经典的案例是通过关联规则挖掘发现“买尿布的男轻父亲通常也会顺便为自己买啤酒”。关联规则数据集示例:编号 交易清单001 可乐 & 鸡蛋 & 香肠002 可乐 & 尿布 & 啤酒003 可乐 & 尿布 & 啤酒 & 香肠004 尿布原创 2020-06-21 00:38:12 · 947 阅读 · 0 评论 -
支持向量机学习笔记
支持向量机学习笔记呕心沥血整理的SVM学习笔记,完整总结了SVM的思想和整个求解过程,里面有诸多本人在学习过程中的想法,希望对初学者有帮助!原创 2017-03-05 23:31:26 · 1247 阅读 · 0 评论 -
GSA(引力搜索)优化算法MATLAB源码详细中文注解
以优化SVM算法的参数c和g为例,对GSA(引力搜索)算法MATLAB源码进行了详细中文注解。原创 2016-10-04 09:17:38 · 15883 阅读 · 14 评论 -
混合灰狼优化(HGWO,DE-GWO)算法matlab源码
今天学习一个比较新的优化算法,用差分进化(DE)改进原始的灰狼优化(GWO)得到的HGWO(也可以叫DE-GWO)。原创 2016-11-07 17:00:40 · 19230 阅读 · 69 评论 -
SA(模拟退火)优化算法MATLAB源码详细中文注解
以优化SVM算法的参数c和g为例,对SA(模拟退火)算法MATLAB源码进行了逐行中文注解。原创 2016-09-30 16:24:18 · 9741 阅读 · 9 评论 -
DE(差分进化)优化算法MATLAB源码详细中文注解
以优化SVR算法的参数c和g为例,对DE(差分进化)算法MATLAB源码进行了详细中文注解。原创 2016-11-03 10:18:45 · 20882 阅读 · 13 评论 -
FA(萤火虫算法)MATLAB源码详细中文注解
以优化SVM算法的参数c和g为例,对FA(萤火虫算法)MATLAB源码进行了逐行中文注解。原创 2020-02-16 04:19:46 · 25086 阅读 · 29 评论 -
用基于信息熵的topsis方法实现学生成绩的综合排名
TOPSIS方法排序的基本思路是首先定义决策问题的正理想解(即最好的)和负理想解(即最坏的),然后把实际可行解(样本)和正理想解与负理想解作比较。通过计算实际可行解与正理想解和负理想解的加权欧氏距离,得出实际可行解与正理想解的接近程度,以此作为排序的依据。若某个可行解(样本)最靠近理想解,同时又最远离负理想解,则此解排序最靠前。通常,当排序时有多个指标需要考虑时,常用“专家打分法”来确定各个指标的原创 2016-08-08 14:20:48 · 6947 阅读 · 3 评论 -
GWO(灰狼优化)算法MATLAB源码逐行中文注解
以优化SVM算法的参数c和g为例,对GWO算法MATLAB源码进行了逐行中文注解。原创 2016-09-08 10:26:19 · 41392 阅读 · 115 评论 -
ABC(智能蜂群算法)优化SVM_源码逐行中文注解
最近发现要彻底、快速地弄懂一个算法,最好的办法就是找源码来,静下心,一行一行的学习。所以我把ABC算法的源码找来逐行做了中文注释,并以优化SVM参数为例,进行学习。原创 2016-09-04 17:22:57 · 9784 阅读 · 27 评论 -
CS(布谷鸟搜索)算法MATLAB源码逐行中文注解
以优化SVM算法的参数c和g为例,对CS算法MATLAB源码进行了逐行中文注解。原创 2016-09-05 18:53:51 · 20760 阅读 · 28 评论 -
k近邻(kNN)算法的Python实现(基于欧氏距离)
k近邻算法是机器学习中原理最简单的算法之一,其思想为:给定测试样本,计算出距离其最近的k个训练样本,将这k个样本中出现类别最多的标记作为该测试样本的预测标记。 k近邻算法虽然原理简单,但是其泛华错误率却不超过贝叶斯最有分类器错误率的两倍。所以实际应用中,k近邻算法是一个“性价比”很高的分类工具。原创 2016-07-11 20:15:18 · 6017 阅读 · 0 评论 -
梯度下降法实现softmax回归MATLAB程序
解决二分类问题时我们通常用Logistic回归,而解决多分类问题时若果用Logistic回归,则需要设计多个分类器,这是相当麻烦的事情。softmax回归可以看做是Logistic回归的普遍推广(Logistic回归可看成softmax回归在类别数为2时的特殊情况),在多分类问题上softmax回归是一个有效的工具。原创 2016-06-29 17:10:26 · 9208 阅读 · 1 评论