平面点集的凸包

概念:给定一个平面的点集q,求覆盖所有点的最小凸多边形(在多边形边上,或内部)。
主要求解思想:
采用分治算法
这里写图片描述
如图,先找出y坐标最大和做小的点,并入此多边形的顶点集(因为是y坐标最大和最小,所以此直线左边和右边的凸包合起来还是凸包);
对直线左右的点进行递归处理:
如直线左边,先找到一个离直线最远的点p并入多边形顶点集,连接p和ymin和ymax(因为是离直线d最远的点, 所以直线a左边的凸包和b上边的凸包合起来还是凸包,如图:
这里写图片描述
然后分别对直线a左边和直线b上边的点递归处理。
最后得到多边形的顶点集。
算法时间复杂度:0( n2 )

这里写图片描述

注:图片截取于https://class.coursera.org/algorithms-001/lecture/81

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值