[论文解读]Going out on a limb: Joint Extraction of Entity Mentions and Relations without...

在这里插入图片描述


背景

主要工作

  • 上图描述的是对“safwan”这个单词进行实体识别和关系分类的示例图。前面都好理解,主要看一下relation layer,relation layer利用了attention的思想。对于当前entity(关系分类只考虑是entity的token),计算它与之前所有entity的相似度,然后进行softmax,选择最大概率的entity做为和它有关系的entity。具体来说,query是当前位置t的lebel embedding( b t ^{b}t bt)和top-hidden unit(以下简称 z t ^{z}t zt)的拼接。而key和value为位置t之前的所有 z t ^{z}t zt b t ^{b}t bt的拼接。即query要和所有之前的位置t(只包括实体位置,非实体不计算)的key进行相似度计算,然后softmax后选择一个最大概率的entity,如果最大概率是本身,则说明该实体没有关系。具体公式如下所示:
    在这里插入图片描述
    这里w1在每个位置是不同的,因为后面每个位置t的堆叠维数不同,而且没有用到value,即直接选择权值u最大的entity。
  • 以上只能得到当前位置的entity和它之前的哪个entity最有关系,而并没有指明关系类型,作者提出在相似度计算函数中的参数v中增加维数,从而得到的u不再是权重值而是一个R维的向量,R为关系的类别数,这样经过所有位置的softmax就能得到一个T*R的矩阵,T为当前位置数,这样取矩阵中最大的数(概率)所代表的位置和关系即为和当前位置entity最有关系的entity和relation。
  • 对于多关系分类,即一个entity可能与多个entity有关系,作者在训练的时候对每个关系对应的位置不再设为1,而是设为1/N,N为这个位置entity对应的关系数。
  • 大多数序列标注问题在解码的时候采用从左到右的解码方式,缺少对右边序列的建模,作者利用了对输出的双向建模来提高模型效果。在训练的时候,bilstm及以下的结构是共享的,bilstm之上的网络是分开的,即前向和后向建模,每一步使用真实label做为下一步的输入。在预测阶段,因为没有真实label,所以前向后向的输出可能有冲突,这时选择最大概率值的label做为输出。
  • 不同于其他的bilstm把前向和后向单元的输出拼接,作者把前后向单元又feed进了一个神经网络做为输出。
    在这里插入图片描述
思考
  • 和论文1“End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures“相比,不同点除了是否利用树结构这个外部特征之外,论文1主要是先进行了实体识别,然后遍历所有的实体对,输出他们之间关系,关系识别和实体识别的底层网络是共享的,但并不能说是真正的联合抽取。这篇论文是一边识别实体,一边抽取关系,具体来说是当前位置实体识别出来后,通过比较它与之前所有位置实体的相似度(attention机制),来识别出当前实体与其他实体的关系,是真正的联合抽取。
参考
  1. https://blog.csdn.net/bobobe/article/details/82867239
  2. https://blog.csdn.net/bobobe/article/details/82878169
  3. Going out on a limb: Joint Extraction of Entity Mentions and Relations
    without Dependency Trees
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值