Nstar-LDS
码龄2年
  • 104,364
    被访问
  • 76
    原创
  • 1,232,356
    排名
  • 104
    粉丝
关注
提问 私信

个人简介:n品炼丹师

  • 加入CSDN时间: 2020-01-02
博客简介:

nstarLDS的博客

查看详细资料
个人成就
  • 获得169次点赞
  • 内容获得26次评论
  • 获得739次收藏
创作历程
  • 78篇
    2020年
成就勋章
TA的专栏
  • 机器学习笔记
    20篇
  • 基础数学学习笔记
    11篇
  • NLPer阅读笔记
    17篇
  • pytorch学习笔记
    11篇
  • ESL阅读笔记
    22篇
  • Linux(Ubuntu)笔记
    3篇
  • Python学习笔记
    1篇
兴趣领域 设置
  • 人工智能
    pytorchnlpscikit-learn分类
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

conda ‘Solving environment: failed‘ 解决方案

方法一:添加环境变量某些例如安装包等类似操作会在用户不知道的时候改变环境变量,因此如果是Windows用户就检查一下自己的环境变量,如果是Ubuntu用户,则打开主目录里面的.bashrc文件,添加下面三句话export PATH="$PATH:~/anaconda3/Scripts"export PATH="$PATH:~/anaconda3"export PATH="$PATH:~/anaconda3/Library/bin"重新打开一个新的命令行执行conda install命令即可,亲测
原创
发布博客 2020.07.23 ·
8933 阅读 ·
1 点赞 ·
0 评论

更新或安装导致No module named ‘conda‘解决方案

打开命令行,先暂时下载这样一个包用来修复你的condawget -O conda-exec https://repo.anaconda.com/pkgs/misc/conda-execs/conda-latest-linux-64.exe出现以下下载信息,下载成功然后赋予执行权限chmod +x conda-exec接下来在环境变量里添加你想要修复的conda文件夹export CONDA_ROOT_PREFIX=~/anaconda3然后执行下面语句验证添加的环境变量路径是否关联到了
原创
发布博客 2020.07.19 ·
2067 阅读 ·
5 点赞 ·
4 评论

LINE: Large-scale Information Network Embedding阅读笔记

文章名为LINE:大规模信息网络特征表示,发表于WWW 2015,一作单位微软亚研院。这篇文章提出的LINE可适用于百万级边的大型网络,不基于random walk而是通过网络结构(1阶相似度与2阶相似度)设计优化目标函数,通过SGD来学习得到node embedding,是一篇开拓性的工作。简单说就是两点之间边的真实权重,和预测权重之间的差距,通过KL散度来度量,得到目标函数,然后进行优化学习。研究背景图神经网络的研究背景都差不多,传统的算法对邻接矩阵进行分解,学到的是每一个node的特征向量(背
原创
发布博客 2020.07.05 ·
295 阅读 ·
0 点赞 ·
0 评论

深度学习必备数学基础 全讲解

数学基础总结花书1-4章,所必备的数学基础如下矩阵对角化,SVD分解与应用(神经网络加速,图像压缩)逆矩阵,伪逆矩阵PCA原理与推导极大似然估计等估计方法有约束无约束的最优化问题...
原创
发布博客 2020.06.16 ·
677 阅读 ·
0 点赞 ·
1 评论

机器学习常用的numpy方法总结

numpy.ravel()&numpy.flatten()两个函数都是将多维的数组铺平成一维的数组,但是两者的区别是返回拷贝还是返回视图,就是说ravel返回的东西,修改后会影响原数组,flatten返回的东西,修改后就不会影响原数组。numpy.meshgrid()一般在分类结果可视化的时候常用,快速生成坐标矩阵,然后根据判别边界划分坐标矩阵中的所有的点。x = np.linspace(0,1000,20)y = np.linspace(0,500,20)X,Y = np.meshgr
原创
发布博客 2020.06.12 ·
275 阅读 ·
0 点赞 ·
0 评论

Chinese NER Using Lattice LSTM阅读笔记

这篇论文发表于ACL 2018,研究单位是新加坡科技大学。研究背景中文命名实体识别长久存在挑战的就是命名实体边界问题,还有粗粒度造成的识别问题,以及比词性标注更具混淆性的类别分类。举几个反映实际问题的例子:中华人民共和国中央人民政府(复合)《白鹿原》改编自同名小说《白鹿原》(类别混淆)《莫斯科的夜晚》(嵌套+类别混淆)中国工商银行,工商银行,工行(简称)上海博物馆(地名,也可以是机构名)OOV问题(命名实体无穷无尽,至今NER模型泛化能力都远低于预期)新冠,秀儿,冲鸭,舔狗,我伙呆(新
原创
发布博客 2020.06.10 ·
357 阅读 ·
0 点赞 ·
0 评论

Modeling Relational Data with GCN阅读笔记

文章目录基础知识提要欧式空间非欧数据图结构知识图谱GCN模型部分基分解块对角分解总结应用基础知识提要欧式空间欧几里得空间中的数据最显著的特征就是有规则的空间结构,比如图片是规则的正方形栅格,语音是规则的一维序列,文本也是规则的序列,这些数据结构能够用一维、二维的矩阵表示。非欧数据有很多数据不具备规则的空间结构,这些数据就称为非欧数据。比如推荐系统、电子交易、分子结构或者知识图谱。这些图谱结构每个节点连接都不尽相同,有的节点有三个连接,有的节点有两个连接,是不规则的数据结构。表示非欧数据的方式之一
原创
发布博客 2020.06.06 ·
329 阅读 ·
1 点赞 ·
0 评论

概率潜在语义分析(PLSA)

文章目录基本概要生成模型和共现模型概率潜在语义分析的算法基本概要概率潜在语义分析是一种利用概率生成模型对文本集合进行话题分析的无监督学习方法。模型最大的特点就是用隐变量表示话题。整个模型表示文本生成话题,话题生成单词,从而得到单词-文本共现数据的过程。假设每个文本由一个话题分布决定,每个话题由一个单词分布决定。概率潜在语义分析受潜在语义分析的启发,1999年由Hofmann提出。最初用于文本数据挖掘,后来扩展至其他领域。上面的说法比较抽象,下面采用更加具体的说法。给定一个文本集合(一句句的话),每
原创
发布博客 2020.05.30 ·
653 阅读 ·
0 点赞 ·
0 评论

潜在语义分析——统计学时代NLP的经典方法

基本概要潜在语义分析,简称LSA(Latent semantic analysis),1990年提出,是一种无监督学习方法,主要用于文本的话题分析、信息检索、推荐系统、图像处理等等。其特点是通过矩阵分解发现文本与单词之间的基于话题的语义关系。文本信息处理中,传统方法以词向量表示文本的语义内容,以单词向量空间的度量表示文本之间的语义相似度。而这样的方式真的可以准确表示语义吗?不能(当时应该还是词袋模型one-hot表示法或频率统计或者共现矩阵,word2vec之后基本上可以满足,即使有的场景不满足也是要基
原创
发布博客 2020.05.26 ·
575 阅读 ·
0 点赞 ·
0 评论

主成分分析 所有知识点全解

基本概念梳理主成分分析方法,是一种使用最广泛的数据降维算法。主要思想是将n维特征映射到k维上,这k维是全新的正交特征,这些正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。这k维构造得好不好,主要看k维空间下,对原始样本空间中数据的特点是否进行了有效的保持,这样机器学习性能才不会大打折扣,保持越多构造得就越好。这些k维空间的正交特征可以理解为k个坐标轴,这k个坐标轴的选取是有规律的,一般第一个坐标轴选取原始数据中方差最大的方向,第m个坐标轴选取与前m-1个正交且使得数据在该轴上投影
原创
发布博客 2020.05.23 ·
1374 阅读 ·
2 点赞 ·
0 评论

全面理解奇异值分解

本篇笔记主要参考《统计学习方法》奇异值分解的定义与性质奇异值分解又叫做SVD,是一种矩阵因子分解方法,是统计学习中的重要工具。任意一个m x n矩阵,都可以表示为三个矩阵的乘积形式,分别是m阶标准正交矩阵、由降序排列的非负对角线元素组成的m x n矩形对角矩阵和n阶标准正交矩阵,这就称为该矩阵的奇异值分解。奇异值分解可以看作矩阵数据压缩的一种方法,即用因子分解的方式近似地表示原始矩阵,这种近似是在平方损失意义下的最优近似。统计学习方法中对奇异值分解定义如下其中UUT=IVVT=IΣ=diag
原创
发布博客 2020.05.20 ·
3968 阅读 ·
3 点赞 ·
2 评论

线性代数——特征值与特征向量

定义几何学意义
原创
发布博客 2020.05.16 ·
1007 阅读 ·
0 点赞 ·
0 评论

ARNOR阅读笔记

论文名称《Attention Regularization based Noise Reduction for Distant Supervision Relation Classification》基于注意力正则化的ARNOR框架文章目录弱监督关系抽取基于多示例学习的方法基于Bootstrapping的方法弱监督关系抽取弱监督学习是有监督学习和无监督学习的折中,训练数据只有部分标注有噪声...
原创
发布博客 2020.05.15 ·
274 阅读 ·
0 点赞 ·
0 评论

线性代数——LU(LR)分解

定义:给定矩阵A,将A表示成下三角矩阵L和上三角矩阵U的乘积,称为LU分解。
原创
发布博客 2020.05.13 ·
1823 阅读 ·
3 点赞 ·
1 评论

应用线性代数课程PPT

发布资源 2020.05.11 ·
rar

矩阵可逆性的理解与总结

以下学习笔记总结于《程序员的数学之线性代数》基本概念对于给定的问题y=Axy=Axy=Ax,如何判断矩阵A是否可逆或者该问题在确定y时是否有解呢?首先,如果A不是方阵,解的存在性和唯一性两者至少有一个被破坏了。为什么呢?我将用下面一段话对该问题给出直观理解。A是m行n列,如果m<n,那么破坏的就是解的唯一性,因为A这个映射把原空间压缩了,压缩就必定存在信息丢失,在空间中也就意味着多个x将对应一个y,所以x不唯一。如果m>n,那么破坏的就是解的存在性,因为A这个映射把原空间维数扩大了,这时候
原创
发布博客 2020.05.10 ·
5276 阅读 ·
3 点赞 ·
0 评论

机器学习学习笔记.rar

发布资源 2020.05.10 ·
rar

BLEU score 原理与解释

BLEU代表bilingual evaluation understudy,即双语评估替补。所谓替补就是代替人类来评估机器翻译的每一个输出结果。例如法语翻译成英语的任务中,源语句是:Le chat est sur le tapis而翻译成英语的形式多种多样,例如:reference1:The cat is on the mat.reference2:There is a cat on t...
原创
发布博客 2020.05.02 ·
1995 阅读 ·
4 点赞 ·
1 评论

Node2Vec图神经网络论文阅读笔记

斯坦福图神经网络数据集snap是Jure等人不间断收集的网络数据集,极大地推动了社交网络领域的发展。node2vec能探索领域的多样性
原创
发布博客 2020.04.28 ·
431 阅读 ·
1 点赞 ·
0 评论

ERNIE:Enhanced Language Representation with Informative Entities阅读笔记

ERNIE主要是基于bert进行改造的,ERNIE这篇文章argue说之前的预训练模型还有不足之处,忽略了将知识信息整合到语言理解中,并采用了下图证明了可优化的地方那如果想要将外部知识组合到语言表征模型中,我们就会遇到两大主要挑战结构化的知识编码:对给定的文本,如何高效地抽取并编码对应的知识图谱是非常重要的,这些知识图谱需要能直接用于语言模型异质信息融合:语言表征的预训练过程和知识表征的...
原创
发布博客 2020.04.23 ·
137 阅读 ·
0 点赞 ·
0 评论
加载更多