- 博客(2)
- 收藏
- 关注
原创 西瓜书-机器学习《二》模型评估与选择
基本概念错误率:分类错误样本占总样本个数的百分比。 训练误差:在训练集上训练模型时,分类的错误率的值。 泛化误差:训练集上训练的新模型,在新样本上分类的错误率的值。过拟合: 学习能力过于强大,学习到了不具有代表性的不一般的特征,导致模型泛化能力差。 欠拟合: 学习能力欠缺,增加训练轮数或者决策树中扩展分支等均可以提高学习能力。评估模型好坏的方法留出法留出法:直接将数据集划分成两个互斥的集合
2017-09-19 16:57:12 639
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人