RANSAC算法详解

ransac是RANdom SAmple Consensus的简称,它是根据一组包含异常数据的样本数据集,通过迭代的方法计算出数据的数学模型参数,得到有效样本数据的非确定性的算法。它于1981年由 Fischler和Bolles最先提出。

对于RANSAC算法有一个基本的假设:样本中包含正确数据(inliers,符合模型的数据)和异常数据(Outliers,不符合模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产生的。同时RANSAC也假设, 给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法。

一个比较经典的例子:平面直线的匹配。


给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。 

生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。 

遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。 



RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 

  • 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  • 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
  • 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
  • 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
  • 最后,通过估计局内点与模型的错误率来评估模型。
  • 上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。


整个过程可参考下图: 


关于算法的源代码,Ziv Yaniv曾经写一个不错的C++版本,我在关键处增补了注释:


#include <math.h>
#include "LineParamEstimator.h"

LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}
/*****************************************************************************/
/*
 * Compute the line parameters  [n_x,n_y,a_x,a_y]
 * 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况
 * 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点
 */
void LineParamEstimator::estimate(std::vector<Point2D *> &data, 
																	std::vector<double> ¶meters)
{
	parameters.clear();
	if(data.size()<2)
		return;
	double nx = data[1]->y - data[0]->y;
	double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k
	double norm = sqrt(nx*nx + ny*ny);
	
	parameters.push_back(nx/norm);
	parameters.push_back(ny/norm);
	parameters.push_back(data[0]->x);
	parameters.push_back(data[0]->y);		
}
/*****************************************************************************/
/*
 * Compute the line parameters  [n_x,n_y,a_x,a_y]
 * 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量
 */
void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data, 
																							std::vector<double> ¶meters)
{
	double meanX, meanY, nx, ny, norm;
	double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix
	int i, dataSize = data.size();

	parameters.clear();
	if(data.size()<2)
		return;

	meanX = meanY = 0.0;
	covMat11 = covMat12 = covMat21 = covMat22 = 0;
	for(i=0; i<dataSize; i++) {
		meanX +=data[i]->x;
		meanY +=data[i]->y;

		covMat11	+=data[i]->x * data[i]->x;
		covMat12	+=data[i]->x * data[i]->y;
		covMat22	+=data[i]->y * data[i]->y;
	}

	meanX/=dataSize;
	meanY/=dataSize;

	covMat11 -= dataSize*meanX*meanX;
        covMat12 -= dataSize*meanX*meanY;
	covMat22 -= dataSize*meanY*meanY;
	covMat21 = covMat12;

	if(covMat11<1e-12) {
		nx = 1.0;
	        ny = 0.0;
	}
	else {	    //lamda1 is the largest eigen-value of the covariance matrix 
	           //and is used to compute the eigne-vector corresponding to the smallest
	           //eigenvalue, which isn't computed explicitly.
		double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;
		nx = -covMat12;
		ny = lamda1 - covMat22;
		norm = sqrt(nx*nx + ny*ny);
		nx/=norm;
		ny/=norm;
	}
	parameters.push_back(nx);
	parameters.push_back(ny);
	parameters.push_back(meanX);
	parameters.push_back(meanY);
}
/*****************************************************************************/
/*
 * Given the line parameters  [n_x,n_y,a_x,a_y] check if
 * [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta
 * 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为
 * 零则表明点在直线上
 */
bool LineParamEstimator::agree(std::vector<double> ¶meters, Point2D &data)
{
	double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]); 
	return ((signedDistance*signedDistance) < m_deltaSquared);
}

RANSAC寻找匹配的代码如下:

/*****************************************************************************/
template<class T, class S>
double Ransac<T,S>::compute(std::vector<S> ¶meters, 
													  ParameterEsitmator<T,S> *paramEstimator , 
												    std::vector<T> &data, 
												    int numForEstimate)
{
	std::vector<T *> leastSquaresEstimateData;
	int numDataObjects = data.size();
	int numVotesForBest = -1;
	int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2
	short *curVotes = new short[numDataObjects];  //one if data[i] agrees with the current model, otherwise zero
	short *bestVotes = new short[numDataObjects];  //one if data[i] agrees with the best model, otherwise zero
	

		      //there are less data objects than the minimum required for an exact fit
	if(numDataObjects < numForEstimate) 
		return 0;
        // 计算所有可能的直线,寻找其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。
	computeAllChoices(paramEstimator,data,numForEstimate,
										bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr);

	   //compute the least squares estimate using the largest sub set
	for(int j=0; j<numDataObjects; j++) {
		if(bestVotes[j])
			leastSquaresEstimateData.push_back(&(data[j]));
	}
        // 对局内点再次用最小二乘法拟合出模型
	paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters);

	delete [] arr;
	delete [] bestVotes;
	delete [] curVotes;	

	return (double)leastSquaresEstimateData.size()/(double)numDataObjects;
}

在模型确定以及最大迭代次数允许的情况下,RANSAC总是能找到最优解。经过我的实验,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。 



 RANSAC可以用于哪些场景呢?最著名的莫过于图片的拼接技术。优于镜头的限制,往往需要多张照片才能拍下那种巨幅的风景。在多幅图像合成时,事先会在待合成的图片中提取一些关键的特征点。计算机视觉的研究表明,不同视角下物体往往可以通过一个透视矩(3X3或2X2)阵的变换而得到。RANSAC被用于拟合这个模型的参数(矩阵各行列的值),由此便可识别出不同照片中的同一物体。可参考下图: 







另外,RANSAC还可以用于图像搜索时的纠错与物体识别定位。下图中,有几条直线是SIFT匹配算法的误判,RANSAC有效地将其识别,并将正确的模型(书本)用线框标注出来: 


Marco Zuliani的Ransac for Dummies,这份资料讲得不错,想要详细了解其原理的同学不妨看看这份资料

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PCL(Point Cloud Library)是一个开源的点云处理库,其中包含了许多常用的点云处理算法,例如平面拟合算法RANSACRANSACRandom Sample Consensus)是一种用于估计模型参数的迭代方法,它可以在存在噪声和离群点的数据中找到最佳的模型参数。 下面我们来详细介绍一下PCL中的RANSAC算法在平面拟合中的应用。 1. 原理 平面拟合是指在点云数据中找到最适合一组点集的平面方程。假设我们有一个点云数据集$P = \{p_1, p_2, ..., p_N\}$,其中每个点$p_i$都有三个坐标$(x_i, y_i, z_i)$。我们的目标是在其中找到一个平面方程$ax + by + cz + d = 0$,其中$a, b, c$是平面的法向量,$d$是平面到原点的距离。 PCL中的平面拟合算法RANSAC的基本思想是在数据集中随机选择一组点,然后计算这些点所代表的平面方程,将这个平面方程与其他点的距离进行比较,判断哪些点属于这个平面。如果有足够多的点属于这个平面,那么这个平面就是一个好的拟合。如果选择的点不够好,那么就重新随机选择一组点,直到找到一个好的拟合。 2. 算法流程 具体来说,PCL中的RANSAC算法流程如下: 1) 从点云数据集中随机选择$n$个点,这些点被称为内点(inliers)。 2) 计算这$n$个点所代表的平面方程。 3) 遍历数据集中的每个点,计算该点到平面的距离,如果距离小于一定的阈值,那么将该点标记为内点。如果内点的数目超过了一定比例,那么就认为这$n$个点代表了一个好的拟合。 4) 重复上述步骤若干次,最终选择内点数目最多的平面方程作为最终的拟合结果。 3. 代码实现 下面是一个简单的PCL平面拟合的代码实现,其中使用了RANSAC算法: ```cpp #include <pcl/point_types.h> #include <pcl/features/normal_3d.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> int main() { // 定义点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // 从文件中读取点云数据 pcl::io::loadPCDFile<pcl::PointXYZ>("table_scene_lms400.pcd", *cloud); // 创建分割对象 pcl::SACSegmentation<pcl::PointXYZ> seg; // 设置分割参数 seg.setOptimizeCoefficients(true); seg.setModelType(pcl::SACMODEL_PLANE); seg.setMethodType(pcl::SAC_RANSAC); seg.setMaxIterations(1000); seg.setDistanceThreshold(0.01); // 创建模型系数和点索引容器 pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers(new pcl::PointIndices); // 执行分割 seg.setInputCloud(cloud); seg.segment(*inliers, *coefficients); // 输出平面方程的系数 std::cerr << "Model coefficients: " << coefficients->values[0] << " " << coefficients->values[1] << " " << coefficients->values[2] << " " << coefficients->values[3] << std::endl; } ``` 其中,loadPCDFile函数用于读取点云数据,SACSegmentation对象用于进行平面拟合,setModelType和setMethodType用于设置平面模型和拟合方法,setMaxIterations设置迭代次数,setDistanceThreshold设置距离阈值。最后,segment函数执行拟合,并返回拟合结果的系数和内点索引。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值