pandas系列总结(2)--- pandas基础功能(初步了解数据及函数)

本文主要介绍了pandas库中DataFrame的基础功能,包括查看数据基本信息,如数据集大小、描述性统计量;数据排序,如按索引和值排序;数据离散化,如等频和等距分段;以及如何应用自定义函数到DataFrame或Series。重点讲解了sort_index、sort_values、apply和transform方法的使用。
摘要由CSDN通过智能技术生成

延续总结(1):pandas系列总结(1) --- pandas数据结构

实际使用中,我常用的DataFrame数据类型,下面了解DataFrame基本功能,基本数据集

import pandas as pd
import numpy as np
index = pd.Index(['love','alice','peter','mars','mechel'],name='name')
data = {'age':[45,34,55,12,23],
        'city':['beijign','shanghai','hangzhou','tianjin','yunnan'],
        'gender':['male','female','male','female','male']}
df_age  = pd.DataFrame(data=data, index=index)
df_age['age_2'] = df_age.age + 3

一、数据基本情况

1.数据集基本信息


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值