USACO Section 3.3 Camelot

28 篇文章 0 订阅

题意:

棋盘上有一些骑士和一个王  王在移动时与骑士相遇可以同行  问  最少多少步可以使骑士和王汇聚到一起


思路:

先假设棋盘上每个点都有个骑士  bfs得出任意两点的最短路  再枚举终点  分两种情况讨论:

1.王和骑士均自己走到终点

2.骑士去接王一起走

对于情况1直接计算即可  对于情况2需要枚举哪个骑士在哪个点接上王

但完全枚举数量太大需要剪枝——王最多移动两步


代码:

/*
ID: housera1
PROG: camelot
LANG: C++
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

int dp[31][27][31][27];
int dir[8][2]={ {-1,-2},{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2} };
int n,m,ans=2147483647,tot;
struct node
{
    int x,y;
}kt[810],kg,u,v;
queue<node> qu;

void bfs(int sx,int sy)
{
    int i;
    while(!qu.empty()) qu.pop();
    u.x=sx; u.y=sy;
    qu.push(u);
    while(!qu.empty())
    {
        u=qu.front();
        qu.pop();
        for(i=0;i<8;i++)
        {
            v.x=u.x+dir[i][0]; v.y=u.y+dir[i][1];
            if(v.x>=1&&v.x<=n&&v.y>=1&&v.y<=m&&(dp[sx][sy][v.x][v.y]==-1||dp[sx][sy][v.x][v.y]>dp[sx][sy][u.x][u.y]+1))
            {
                if(dp[sx][sy][v.x][v.y]==-1) qu.push(v);
                dp[sx][sy][v.x][v.y]=dp[sx][sy][u.x][u.y]+1;
            }
        }
    }
}

void make_dp()
{
    int i,j;
    memset(dp,-1,sizeof(dp));
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            dp[i][j][i][j]=0;
            bfs(i,j);
        }
    }
/*
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            printf("(1,25)->(%-2d,%-2d) dp %d\n",i,j,dp[i][j][1][25]);
        }
    }
*/
}

void solve()
{
    int i,j,k,l,o,p,tmp;
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            for(l=max(1,kg.x-2);l<=min(n,kg.x+2);l++)
            {
                for(o=max(1,kg.y-2);o<=min(m,kg.y+2);o++)
                {
                    for(k=0,tmp=max(abs(kg.x-l),abs(kg.y-o));k<tot;k++)
                    {
                        if(dp[kt[k].x][kt[k].y][i][j]==-1) break;
                        else tmp+=dp[kt[k].x][kt[k].y][i][j];
                    }
                    if(k!=tot) continue;;
                    for(k=0;k<tot;k++)
                    {
                        p=tmp;
                        p-=dp[kt[k].x][kt[k].y][i][j];
                        if(dp[l][o][i][j]==-1||dp[kt[k].x][kt[k].y][l][o]==-1) break;
                        p+=dp[l][o][i][j]+dp[kt[k].x][kt[k].y][l][o];
                        ans=min(ans,p);
                        //printf("end (%d,%d) mid (%d,%d) tmp %d\n",i,j,l,o,p);
                    }
                }
            }
        }
    }
    printf("%d\n",ans);
}

int main(){
	int Debug=0;
	if(!Debug){
		freopen("camelot.in","r",stdin);
		freopen("camelot.out","w",stdout);
	}
	int i=0,j;
	char input[5];
	scanf("%d%d",&n,&m);
	scanf("%s%d",input,&j);
	kg.y=input[0]-'A'+1; kg.x=j;
	while(~scanf("%s%d",input,&j))
    {
        kt[i].y=input[0]-'A'+1;
        kt[i].x=j;
        i++;
    }
    tot=i;
    if(tot==0)
    {
        printf("0\n");
        return 0;
    }
    make_dp();
    solve();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值