题目分析:本题的突破口就是a[i]<=100000。。
首先将区间【L,R】拆成【1,L-1】,【1,R】,因此我们只要统计数字X在区间【1,R】内因子的个数以及在【1,L-1】内因子的个数,相减就是X在区间【L,R】内X的因子的个数。
其中找N以内所有数的所有因子可以用筛法。
找所有数在区间【1,i】内的因子个数可以用如下算法:
for ( int i = 1 ; i <= n ; ++ i ) {
num[a[i]] ++ ;
for ( 所有在i上的X ) {
cnt[i,X] = 0 ;
for ( 所有X的所有因子:j ) {
cnt[i,X] += num[j] ;
}
}
}
这样大致就清楚了吧?将所有操作离线然后用邻接表保存后就可以用上述算法求解了。
代码如下:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define REP( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )
#define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , n
#define rt o , l , r
#define mid ( ( l + r ) >> 1 )
typedef long long LL ;
const int MAXN = 100005 ;
const int MAXE = 1400000 ;
struct Edge {
int v ;
int idx ;
Edge* next ;
} E[MAXE] , *H[MAXN] , *cur , *F[MAXN] , *rcur ;
int num[MAXN] , a[MAXN] , ans[MAXN] ;
int n , q ;
void clear () {
cur = E ;
CLR ( H , 0 ) ;
}
void addedge ( int u , int v ) {
cur -> v = v ;
cur -> next = H[u] ;
H[u] = cur ++ ;
}
void add ( int u , int v , int idx ) {
cur -> v = v ;
cur -> idx = idx ;
cur -> next = F[u] ;
F[u] = cur ++ ;
}
void fun () {
clear () ;
for ( int i = 1 ; i < MAXN ; ++ i ) {
for ( int j = i ; j < MAXN ; j += i ) {
addedge ( j , i ) ;
}
}
rcur = cur ;
}
void solve () {
int l , r , x ;
CLR ( num , 0 ) ;
CLR ( F , 0 ) ;
cur = rcur ;
FOR ( i , 1 , n ) scanf ( "%d" , &a[i] ) ;
scanf ( "%d" , &q ) ;
FOR ( i , 1 , q ) {
scanf ( "%d%d%d" , &l , &r , &x ) ;
add ( l - 1 , x , i ) ;
add ( r , x , i ) ;
ans[i] = -1 ;
}
FOR ( i , 1 , n ) {
num[a[i]] ++ ;
travel ( e , F , i ) {
int tmp = 0 , idx = e -> idx ;
travel ( ee , H , e -> v ) tmp += num[ee -> v] ;
if ( ~ans[idx] ) ans[idx] = tmp - ans[idx] ;
else ans[idx] = tmp ;
}
}
FOR ( i , 1 , q ) printf ( "%d\n" , ans[i] ) ;
}
int main () {
fun () ;
while ( ~scanf ( "%d" , &n ) ) solve () ;
return 0 ;
}