【ACdream】1070 神奇的%系列二

传送门:【ACdream】1070 神奇的%系列二


题目分析:本题的突破口就是a[i]<=100000。。

首先将区间【L,R】拆成【1,L-1】,【1,R】,因此我们只要统计数字X在区间【1,R】内因子的个数以及在【1,L-1】内因子的个数,相减就是X在区间【L,R】内X的因子的个数。

其中找N以内所有数的所有因子可以用筛法。

找所有数在区间【1,i】内的因子个数可以用如下算法:

for ( int i = 1 ; i <= n ; ++ i ) {
	num[a[i]] ++ ;
	for ( 所有在i上的X ) {
		cnt[i,X] = 0 ;
		for ( 所有X的所有因子:j ) {
			cnt[i,X] += num[j] ;
		}
	}
}

这样大致就清楚了吧?将所有操作离线然后用邻接表保存后就可以用上述算法求解了。


代码如下:


#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
 
#define REP( i , a , b ) for ( int i = ( a ) ; i <  ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )
#define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , n
#define rt o , l , r
#define mid ( ( l + r ) >> 1 )

typedef long long LL ;

const int MAXN = 100005 ;
const int MAXE = 1400000 ;

struct Edge {
	int v ;
	int idx ;
	Edge* next ;
} E[MAXE] , *H[MAXN] , *cur , *F[MAXN] , *rcur ;

int num[MAXN] , a[MAXN] , ans[MAXN] ;
int n , q ;

void clear () {
	cur = E ;
	CLR ( H , 0 ) ;
}

void addedge ( int u , int v ) {
	cur -> v = v ;
	cur -> next = H[u] ;
	H[u] = cur ++ ;
}

void add ( int u , int v , int idx ) {
	cur -> v = v ;
	cur -> idx = idx ;
	cur -> next = F[u] ;
	F[u] = cur ++ ;
}

void fun () {
	clear () ;
	for ( int i = 1 ; i < MAXN ; ++ i ) {
		for ( int j = i ; j < MAXN ; j += i ) {
			addedge ( j , i ) ;
		}
	}
	rcur = cur ;
}

void solve () {
	int l , r , x ;
	CLR ( num , 0 ) ;
	CLR ( F , 0 ) ;
	cur = rcur ;
	FOR ( i , 1 , n ) scanf ( "%d" , &a[i] ) ;
	scanf ( "%d" , &q ) ;
	FOR ( i , 1 , q ) {
		scanf ( "%d%d%d" , &l , &r , &x ) ;
		add ( l - 1 , x , i ) ;
		add ( r , x , i ) ;
		ans[i] = -1 ;
	}
	FOR ( i , 1 , n ) {
		num[a[i]] ++ ;
		travel ( e , F , i ) {
			int tmp = 0 , idx = e -> idx ;
			travel ( ee , H , e -> v ) tmp += num[ee -> v] ;
			if ( ~ans[idx] ) ans[idx] = tmp - ans[idx] ;
			else ans[idx] = tmp ;
		}
	}
	FOR ( i , 1 , q ) printf ( "%d\n" , ans[i] ) ;
}

int main () {
	fun () ;
	while ( ~scanf ( "%d" , &n ) ) solve () ;
	return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值