【HDU】3686 Traffic Real Time Query System 点双连通+LCA

传送门:【HDU】3686 Traffic Real Time Query System


题目分析:关键点实际上就是割顶,那么我们缩边(也就是求点双连通块),这些边都是一个连通分量标号,然后所有的割顶另外标号,然后我们将割顶和相连的连通块之间建边。这样路径就变成了连通块---割顶---连通块---……---连通块。连通块和割顶是交错的,所以路径长度/2就是割顶的个数。路径长度我们可以用lca来求,dep[v] + dep[u] - dep[lca(u,v)] + 1就是路径长度。


突破口:关键点可以看成是树上的节点,所以我们可以将图向树转化,顺着这一思路我们可以比较顺利的想出算法。

两点要注意:重边,图不连通。


代码如下:


#include <set>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

typedef long long LL ;

#define rep( i , a , b ) for ( int i = ( a ) ; i <  ( b ) ; ++ i )
#define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define clr( a , x ) memset ( a , x , sizeof a )

const int MAXN = 200005 ;
const int MAXE = 400005 ;
const int LOGN = 17 ;

struct Edge {
	int v , f , n ;
	Edge () {}
	Edge ( int v , int f , int n ) : v ( v ) , f ( f ) , n ( n ) {}
} ;

struct BCC {
	Edge E[MAXE] ;
	int H[MAXN] , cntE ;
	int dfn[MAXN] , low[MAXN] , dfs_clock ;
	int bcc[MAXN] ;
	int bcc_cnt ;
	int is[MAXN] ;
	int S[MAXN] , top ;
	int belong[MAXN] ;

	void clear () {
		top = 0 ;
		cntE = 0 ;
		bcc_cnt = 0 ;
		dfs_clock = 0 ;
		clr ( H , -1 ) ;
		clr ( is , 0 ) ;
		clr ( dfn , 0 ) ;
	}

	void addedge ( int u , int v ) {
		E[cntE] = Edge ( v , 0 , H[u] ) ;
		H[u] = cntE ++ ;
	}

	void tarjan ( int u , int fa = 0 ) {
		dfn[u] = low[u] = ++ dfs_clock ;
		for ( int i = H[u] ; ~i ; i = E[i].n ) {
			int v = E[i].v ;
			if ( E[i].f ) continue ;
			E[i].f = E[i ^ 1].f = 1 ;
			S[top ++] = ( i >> 1 ) ;
			if ( !dfn[v] ) {
				tarjan ( v , u ) ;
				low[u] = min ( low[u] , low[v] ) ;
				if ( low[v] >= dfn[u] ) {
					++ bcc_cnt ;
					++ is[u] ;
					while ( 1 ) {
						int x = S[-- top] ;
						belong[x] = bcc_cnt ;
						if ( x == ( i >> 1 ) ) break ;
					}
				}
			} else low[u] = min ( low[u] , dfn[v] ) ;
		}
		if ( fa == 0 ) -- is[u] ;
	}

	void find_bcc ( int n ) {
		For ( i , 1 , n ) if ( !dfn[i] ) tarjan ( i ) ;
		For ( i , 1 , n ) if ( is[i] ) bcc[i] = ++ bcc_cnt ;
	}
} Graph ;

Edge E[MAXE] ;
int H[MAXN] , cntE ;
int anc[MAXN][LOGN] ;
int dep[MAXN] ;
int vis[MAXN] , Time ;
int n , m , q ;

void clear () {
	cntE = 0 ;
	Time = 0 ;
	clr ( H , -1 ) ;
	clr ( vis , 0 ) ;
	anc[1][0] = -1 ;
	dep[1] = 0 ;
}

void addedge ( int u , int v ) {
	E[cntE] = Edge ( v , 0 , H[u] ) ;
	H[u] = cntE ++ ;
}

void dfs ( int u ) {
	vis[u] = Time ;
	for ( int i = H[u] ; ~i ; i = E[i].n ) {
		int v = E[i].v ;
		if ( v == anc[u][0] ) continue ;
		anc[v][0] = u ;
		dep[v] = dep[u] + 1 ;
		dfs ( v ) ;
	}
}

void preprocess () {
	For ( i , 1 , Graph.bcc_cnt ) {
		rep ( j , 1 , LOGN ) {
			anc[i][j] = -1 ;
		}
	}
	rep ( j , 1 , LOGN ) {
		For ( i , 1 , Graph.bcc_cnt ) {
			if ( ~anc[i][j - 1] ) {
				anc[i][j] = anc[anc[i][j - 1]][j - 1] ;
			}
		}
	}
}

int query ( int x , int y , int log = 0 ) {
	if ( dep[x] < dep[y] ) swap ( x , y ) ;
	for ( log = 0 ; ( 1 << log ) <= dep[x] ; ++ log ) ;
	rev ( i , log , 0 ) {
		if ( dep[x] - ( 1 << i ) >= dep[y] ) {
			x = anc[x][i] ;
		}
	}
	if ( x == y ) return x ;
	rev ( i , log , 0 ) {
		if ( ~anc[x][i] && anc[x][i] != anc[y][i] ) {
			x = anc[x][i] ;
			y = anc[y][i] ;
		}
	}
	return anc[x][0] ;
}

void solve () {
	int u , v ;
	Graph.clear () ;
	clear () ;
	rep ( i , 0 , m ) {
		scanf ( "%d%d" , &u , &v ) ;
		Graph.addedge ( u , v ) ;
		Graph.addedge ( v , u ) ;
	}
	Graph.find_bcc ( n ) ;
	For ( x , 1 , n ) {
		u = x ;
		if ( !Graph.is[u] ) continue ;
		++ Time ;
		for ( int i = Graph.H[u] ; ~i ; i = Graph.E[i].n ) {
			int v = Graph.belong[i >> 1] ;
			if ( vis[v] != Time ) {
				vis[v] = Time ;
				addedge ( v , Graph.bcc[u] ) ;
				addedge ( Graph.bcc[u] , v ) ;
			}
		}
	}
	++ Time ;
	For ( i , 1 , Graph.bcc_cnt ) if ( vis[i] != Time ) dfs ( i ) ;
	preprocess () ;
	scanf ( "%d" , &q ) ;
	while ( q -- ) {
		scanf ( "%d%d" , &u , &v ) ;
		-- u ;
		-- v ;
		u = Graph.belong[u] ;
		v = Graph.belong[v] ;
		printf ( "%d\n" , ( dep[u] + dep[v] - 2 * dep[query ( u , v )] + 1 ) / 2 ) ;
	}
}

int main () {
	while ( ~scanf ( "%d%d" , &n , &m ) && ( n || m ) ) solve () ;
	return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值