【HDU】5928 Birthday Gift【极角排序+dp】

题目链接:Birthday Gift

首先,最优解一定是一个凸包,但是接下来的算法不会显性利用到凸包的性质。
枚举每个点作为多边形最左侧的端点(然后删除他左侧的点,否则可能会错,我就因为这个问题错了好几发,虽然不知道什么情况,删了保证对),然后以这个点做极角排序,接下来dp[i][j]表示多边形上上个极角序最大的点是i,内部包含了j个点的最小周长,然后枚举下一个点就可以做到n^3转移(三角形内点的个数要O(n^4)预处理)。因为枚举了最多端点,所以dp复杂度是O(n^4)。总复杂度即O(n^4)。其实这样得到的解一定是凸包,因为不是凸包的解不可能比是凸包的解还优。

PS:有重点以及三点共线也很简单,多加一些处理即可。

#include <bits/stdc++.h>
using namespace std ;

typedef long long LL ;
typedef pair < int , int > pii ;

#define clr( a , x ) memset ( a , x , sizeof a )

const int MAXN = 100 ;
const double INF = 1e60 ;
const double eps = 1e-8 ;
const double pi = acos ( -1.0 ) ;

int dcmp ( double x ) {
    return ( x > eps ) - ( x < -eps ) ;
}

struct Point {
    double x , y ;
    Point () {}
    Point ( double x , double y ) : x ( x ) , y ( y ) {}
    bool operator < ( const Point& a ) const {
        return dcmp ( x - a.x ) ? x < a.x : y < a.y ;
    }
    bool operator == ( const Point& a ) const {
        return !dcmp ( x - a.x ) && !dcmp ( y - a.y ) ;
    }
    Point operator + ( const Point& a ) const {
        return Point ( x + a.x , y + a.y ) ;
    }
    Point operator - ( const Point& a ) const {
        return Point ( x - a.x , y - a.y ) ;
    }
    double operator * ( const Point& a ) const {
        return x * a.y - y * a.x ;
    }
    double angle () {
        return atan2 ( y , x ) ;
    }
    double len () {
        return sqrt ( x * x + y * y ) ;
    }
} ;

struct Node {
    double r ;
    int idx ;
    bool operator < ( const Node& a ) const {
        return r < a.r ;
    }
} ;

Node a[MAXN] ;
Point p[MAXN] ;
int n ;
int in[MAXN][MAXN] ;
double len2[MAXN][MAXN] ;
double dp[MAXN][MAXN] ;
double len ;
int ans ;

bool PointInTri ( int i , int j , int k , int l ) {
    int a = dcmp ( ( p[i] - p[l] ) * ( p[j] - p[l] ) ) ;
    int b = dcmp ( ( p[j] - p[l] ) * ( p[k] - p[l] ) ) ;
    int c = dcmp ( ( p[k] - p[l] ) * ( p[i] - p[l] ) ) ;
    return a * b > 0 && b * c > 0 && c * a > 0 ;
}

void calc ( int m ) {
    for ( int i = 0 ; i <= m ; ++ i ) {
        for ( int j = 0 ; j <= m + 1 ; ++ j ) {
            dp[i][j] = INF ;
        }
        for ( int j = 0 ; j <= m ; ++ j ) {
            len2[i][j] = ( p[a[i].idx] - p[a[j].idx] ).len () ;
        }
    }
    for ( int i = 1 ; i <= m ; ++ i ) {
        for ( int j = i + 1 ; j <= m ; ++ j ) {
            in[i][j] = 3 ;
            for ( int l = 1 ; l <= m ; ++ l ) if ( l != i && l != j ) {
                if ( PointInTri ( a[0].idx , a[i].idx , a[j].idx , a[l].idx ) ) {
                    in[i][j] ++ ;
                }
            }
        }
    }
    for ( int i = 1 ; i <= m ; ++ i ) {
        dp[i][2] = len2[0][i] * 2 ;
        for ( int j = 0 ; j <= m + 1 ; ++ j ) {
            for ( int k = 1 ; k < i ; ++ k ) if ( dp[k][j] < 1e50 ) {
                int num = j + in[k][i] - 2 ;
                dp[i][num] = min ( dp[i][num] , dp[k][j] - len2[0][k] + len2[0][i] + len2[i][k] ) ;
            }
        }
    }
    for ( int i = 1 ; i <= m ; ++ i ) {
        for ( int j = 1 ; j <= m + 1 ; ++ j ) {
            if ( dcmp ( dp[i][j] - len ) <= 0 ) ans = max ( ans , j ) ;
            //printf ( "dp[%d][%d] = %.2f\n" , i , j , dp[i][j] ) ;
        }
    }
}

void solve () {
    scanf ( "%d%lf" , &n , &len ) ;
    for ( int i = 1 ; i <= n ; ++ i ) {
        scanf ( "%lf%lf" , &p[i].x , &p[i].y ) ;
    }
    sort ( p + 1 , p + n + 1 ) ;
    ans = 1 ;
    a[0].r = -INF ;
    for ( int i = 1 ; i <= n ; ++ i ) {
        int m = 0 ;
        for ( int j = i + 1 ; j <= n ; ++ j ) {
            ++ m ;
            a[m].idx = j ;
            a[m].r = ( p[j] - p[i] ).angle () ;
            //if ( dcmp ( a[j].r ) < 0 ) a[j].r = 2 * pi + a[j].r ;
        }
        a[0].idx = i ;
        sort ( a + 1 , a + m + 1 ) ;
        calc ( m ) ;
    }
    printf ( "%d\n" , ans ) ;
}

int main () {
    int T ;
    scanf ( "%d" , &T ) ;
    for ( int i = 1 ; i <= T ; ++ i ) {
        printf ( "Case #%d: " , i ) ;
        solve () ;
    }
    return 0 ;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值