【HDU】5771 Turn Game 【dp套dp】

1 篇文章 0 订阅

题目链接:Turn Game

dp套dp。逐行dp,枚举每一行的状态,向下转移。状态即每一列上是否有列覆盖住这一行。

#include <bits/stdc++.h>
using namespace std ;

typedef long long LL ;
typedef vector < int > vi ;
typedef map < LL , int > mpvi ;

#define clr( a , x ) memset ( a , x , sizeof a )

const int mod = 1e9 + 7 ;

int val[16] = { 0 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 1 , 2 , 1 , 1 } ;
int num[16] = { 0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 } ;
int res[5][11][41] ;
int tmp[17] , nxt[17] ;
LL p[20] ;
mpvi dp[2] ;
mpvi :: iterator it ;

void up ( int& x , int y ) {
    x += y ;
    if ( x >= mod ) x -= mod ;
}

void init ( int a[] , int x , int y , int n ) {
    a[n] = x ;
    for ( int i = 0 ; i < n ; ++ i ) {
        a[i] = y + x ;
    }
}

void decode ( LL a , int n ) {
    int x = a / p[n] ;
    tmp[n] = x ;
    for ( int i = 0 ; i < n ; ++ i ) {
        tmp[i] = a % 10 + x ;
        a /= 10 ;
    }
}

LL encode ( int a[] , int n ) {
    LL res = a[n] ;
    for ( int i = n - 1 ; ~i ; -- i ) {
        res = res * 10 + ( a[i] - a[n] ) ;
    }
    return res ;
}


void preprocess () {
    p[0] = 1 ;
    for ( int i = 1 ; i < 20 ; ++ i ) {
        p[i] = p[i - 1] * 10 ;
    }
    for ( int m = 1 ; m <= 4 ; ++ m ) {
        int cur = 0 ;
        init ( tmp , 0 , 6 , 1 << m ) ;
        tmp[0] = 0 ;
        dp[0].clear () ;
        dp[0][encode ( tmp , 1 << m )] = 1 ;
        for ( int n = 1 ; n <= 10 ; ++ n ) {
            cur ^= 1 ;
            dp[cur].clear () ;
            mpvi& pre = dp[cur ^ 1] ;
            for ( it = pre.begin () ; it != pre.end () ; ++ it ) {
                decode ( it->first , 1 << m ) ;
                for ( int i = 0 ; i < 1 << m ; ++ i ) {
                    init ( nxt , 41 , 0 , 1 << m ) ;
                    int minv = 41 ;
                    for ( int j = 0 ; j < 1 << m ; ++ j ) if ( tmp[j] <= n + m - 1 ) {
                        for ( int k = 0 ; k < 1 << m ; ++ k ) {
                            int x = tmp[j] + num[k] - num[j & k] + val[i ^ k] ;
                            nxt[k] = min ( nxt[k] , x ) ;
                            minv = min ( x , minv ) ;
                        }
                    }
                    nxt[1 << m] = minv ;
                    up ( res[m][n][minv] , it->second ) ;
                    up ( dp[cur][encode ( nxt , 1 << m )] , it->second ) ;
                }
            }
            for ( int i = 1 ; i <= 40 ; ++ i ) {
                up ( res[m][n][i] , res[m][n][i - 1] ) ;
            }
        }
    }

}

int main () {

    preprocess () ;
    //printf ( "%.5f\n" , ( double ) clock () / CLOCKS_PER_SEC ) ;
    /*
    printf ( "res[5][11][41] = { " ) ;
    for ( int i = 0 ; i <= 4 ; ++ i ) {
        for ( int j = 0 ; j <= 10 ; ++ j ) {
            for ( int k = 0 ; k <= 40 ; ++ k ) {
                printf ( "%d , " , res[i][j][k] ) ;
            }
        }
    }
    printf ( "} ;\n" ) ;
    */
    int T , n , m , k ;
    scanf ( "%d" , &T ) ;
    for ( int i = 1 ; i <= T ; ++ i ) {
        scanf ( "%d%d%d" , &n , &m , &k ) ;
        printf ( "Case #%d: %d\n" , i , res[n][m][k] ) ;
    }
    return 0 ;
}
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值