【HDU】5743 Join The Future【dp】

题目链接:Join The Future

并查集压缩相等的点,发现最多只会有20个大于1的联通块,状压dp即可

#include <bits/stdc++.h>
using namespace std ;

typedef long long LL ;

#define clr( a , x ) memset ( a , x , sizeof a )

const int MAXN = 42 ;
const int mod = 1e9 + 7 ;

char buf[1000000] ;
int len ;
int p[MAXN] , c[MAXN] ;
int L[MAXN] , R[MAXN] , odd[MAXN] , even[MAXN] ;
int dp[MAXN][MAXN][2] ;
pair < int , int > nxt[MAXN][MAXN][2] ;
int ans[MAXN] , tmp[MAXN] ;
int rt[MAXN] , col[MAXN] ;
int idx[MAXN] ;
int use[MAXN] ;
int n , m ;
int T ;

int F ( int x ) {
    if ( p[x] == x ) return x ;
    int res = F ( p[x] ) ;
    c[x] ^= c[p[x]] ;
    return p[x] = res ;
}

int upd ( int x , int y , int o , int n ) {
    if ( dp[y][x][o] == 0 ) return 0 ;
    int m = y - x ;
    for ( int i = x ; i <= y ; ++ i ) {
        tmp[i] = nxt[y][i][o].first ;
        o = nxt[y][i][o].second ;
    }
    return 1 ;
}

void up ( int ok ) {
    if ( !ok ) return ;
    for ( int i = 1 ; i <= n ; ++ i ) {
        if ( tmp[i] > ans[i] ) return ;
        if ( tmp[i] < ans[i] ) {
            for ( int j = 1 ; j <= n ; ++ j ) {
                ans[j] = tmp[j] ;
            }
            return ;
        }
    }
}

void add ( int x ) {
    if ( x / 10 ) add ( x / 10 ) ;
    buf[len ++] = x % 10 + '0' ;
}

void solve ( int Case ) {
    scanf ( "%d%d" , &n , &m ) ;
    for ( int i = 0 ; i <= n ; ++ i ) {
        p[i] = i ;
        c[i] = 0 ;
        use[i] = 0 ;
    }
    for ( int i = 1 ; i <= n ; ++ i ) {
        scanf ( "%d%d" , &L[i] , &R[i] ) ;
        int tmp = R[i] - L[i] + 1 ;
        odd[i] = tmp / 2 + ( tmp % 2 == 1 && R[i] % 2 == 1 ) ;
        even[i] = tmp / 2 + ( tmp % 2 == 1 && R[i] % 2 == 0 ) ;
    }
    for ( int i = 1 ; i <= n ; ++ i ) {
        for ( int j = 1 ; j <= n + 1 ; ++ j ) {
            dp[i][j][0] = dp[i][j][1] = 0 ;
            nxt[i][j][0] = make_pair ( mod , mod ) ;
            nxt[i][j][1] = make_pair ( mod , mod ) ;
        }
    }
    for ( int i = 1 ; i <= n ; ++ i ) {
        dp[i][i + 1][0] = 1 ;
        for ( int j = i ; j >= 1 ; -- j ) {
            dp[i][j][0] = ( 1LL * dp[i][j + 1][1] * odd[j] + 1LL * dp[i][j + 1][0] * even[j] ) % mod ;
            dp[i][j][1] = ( 1LL * dp[i][j + 1][0] * odd[j] + 1LL * dp[i][j + 1][1] * even[j] ) % mod ;
        }
        for ( int j = 1 ; j <= i ; ++ j ) {
            if ( dp[i][j + 1][1] && odd[j] ) {
                nxt[i][j][0] = min ( nxt[i][j][0] , make_pair ( L[j] + ( L[j] % 2 == 0 ) , 1 ) ) ;
            }
            if ( dp[i][j + 1][0] && even[j] ) {
                nxt[i][j][0] = min ( nxt[i][j][0] , make_pair ( L[j] + ( L[j] % 2 == 1 ) , 0 ) ) ;
            }
            if ( dp[i][j + 1][0] && odd[j] ) {
                nxt[i][j][1] = min ( nxt[i][j][1] , make_pair ( L[j] + ( L[j] % 2 == 0 ) , 0 ) ) ;
            }
            if ( dp[i][j + 1][1] && even[j] ) {
                nxt[i][j][1] = min ( nxt[i][j][1] , make_pair ( L[j] + ( L[j] % 2 == 1 ) , 1 ) ) ;
            }
        }
    }
    int ok = 1 ;
    for ( int i = 1 ; i <= m ; ++ i ) {
        int u , v , w , x , y ;
        scanf ( "%d%d%d" , &u , &v , &w ) ;
        -- u ;
        x = F ( u ) ;
        y = F ( v ) ;
        use[u] = use[v] = 1 ;
        if ( x != y ) {
            if ( x < y ) swap ( x , y ) ;
            p[x] = y ;
            c[x] = ( c[u] - c[v] + 2 + w ) % 2 ;
        } else if ( ( c[u] ^ c[v] ) != w ) ok = 0 ;
    }
    if ( !ok ) {
        buf[len ++] = '0' ;
        buf[len ++] = '\n' ;
        buf[len ++] = '-' ;
        buf[len ++] = '1' ;
        buf[len ++] = '\n' ;
        return ;
    }
    int cnt = 0 , tot = 0 ;
    for ( int i = 0 ; i <= n ; ++ i ) if ( use[i] ) {
        if ( F ( i )  == i ) rt[cnt ++] = i ;
        idx[tot ++] = i ;
    }
    int res = 0 , OK = 0 ;
    for ( int i = 1 ; i <= n ; ++ i ) {
        ans[i] = mod ;
    }
    for ( int s = 0 ; s < 1 << cnt ; ++ s ) {
        if ( cnt && rt[0] == 0 && s % 2 ) continue ;
        col[0] = 0 ;
        for ( int i = 0 ; i < cnt ; ++ i ) {
            col[rt[i]] = s >> i & 1 ;
        }
        int ans = 1 , j = 0 , ok = 1 ;
        for ( int o = ( rt[0] == 0 ) ; o < tot ; ++ o ) {
            int i = idx[o] , x = p[i] ;
            if ( x != i ) col[i] = col[x] ^ c[x] ^ c[i] ;
            ans = 1LL * ans * dp[i][j + 1][col[j] ^ col[i]] % mod ;
            ok &= upd ( j + 1 , i , col[j] ^ col[i] , j ) ;
            if ( !ok ) break ;
            j = i ;
        }
        if ( ok && j < n ) {
            ans = 1LL * ans * ( dp[n][j + 1][0] + dp[n][j + 1][1] ) % mod ;
            int a = upd ( j + 1 , n , 0 , j ) ;
            up ( ok && a ) ;
            int b = upd ( j + 1 , n , 1 , j ) ;
            up ( ok && b ) ;
            ok &= a | b ;
        } else up ( ok ) ;
        if ( ok ) OK = 1 ;
        res = ( res + ans ) % mod ;
    }
    if ( !OK ) {
        buf[len ++] = '0' ;
        buf[len ++] = '\n' ;
        buf[len ++] = '-' ;
        buf[len ++] = '1' ;
        buf[len ++] = '\n' ;
    } else {
        add ( res ) ;
        buf[len ++] = '\n' ;
        for ( int i = 1 ; i <= n ; ++ i ) {
            add ( ans[i] ) ;
            buf[len ++] = i < n ? ' ' : '\n' ;
        }
    }
}

int main () {
    //freopen ( "1010.in" , "r" , stdin ) ;
    //freopen ( "1010.txt" , "w" , stdout ) ;
    len = 0 ;
    scanf ( "%d" , &T ) ;
    for ( int i = 1 ; i <= T ; ++ i ) solve ( i ) ;
    buf[len] = 0 ;
    printf ( "%s" , buf ) ;
    return 0 ;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值