状态压缩dp(状压dp)

注:在涉及到位运算时,一定要注意位运算的优先级。该加的括号一定要加

状压dp是一类比较难理解的dp;

在讲状压dp之前,我们应该清楚所有的dp是解决多阶段决策最优化问题的一种思想方法;

请注意多阶段这三个字:

经过前面三种背包的学习,可以发现如何定义状态是解决动态规划最重要的一步;

状态的定义也就决定了相当于阶段的划分;

在背包问题中,我们通过物品的件数i和背包的容量j来定义状态或者说是划分阶段;

动态规划多阶段一个重要的特性就是无后效性。无后效性就是值对于某个给定的阶段状态,它以前各阶段的状态无法

直接影响它未来的发展,而只能通过当前的这个状态。换句话说影响当前阶段状态只可能是前一阶段的状态

那么可以看出如何定义状态是至关重要的,因为状态决定了阶段的划分,阶段的划分保证了无后效性

————————————————————————————————————————————————————

以上讲了一些基本的概念,以下具体用一个例子和一些习题讲一下状压dp;

有时候为了达到最优子结构和无后效性的效果,我们必须要定义好状态。但是有时候状态维度特别多,但是每个状态的

决策又很少,这样我们开多维数组很可能会浪费,并且可能会爆空间。

这时候我们考虑用状态压缩来做,比如每个状态的决策只有两个,但是状态的维度很多。下面我们用01背包来举例。

有n件物品和一个容量为v的背包。放入第i件物品的占的空间为Ci,得到的价值是Wi;求解每种放法的背包价值;

(当然这不是一个典型的动态规划问题,但是用动态规划的思想有助于讲解状压dp);

 

想一想之前动态规划框架讲解,解决动态规划问题首先要定义状态;

1.定义状态:因为这个要求每一种放法的背包价值,所以我们状态应该是这n件物品的放与不放的情况。

                     最容易想到的是开个n维数组,第i个维度的下标如果是1的话代表放第i件物品,0的话代表不放第i件物品;

                     但是这样很容易造成空间浪费,而且多维数组也不好开;

                     我们仔细观察就会发现,每件物品有放与不放两种选择;假设我们有5件物品的时候,用1和0代表放和不放

                     如果这5件物品都不放的话,那就是00000;

                     如果这5件物品都放的话,    那就是11111;

                    看到这,我们知道可以用二进制表示所有物品的放与不放的情况;如果这些二进制用十进制表示的话就只有

                    一个维度了。而且这一个维度能表示所有物品放与不放的情况;这个过程就叫做状态压缩;

                   细节:观察可以知道在上面的例子中00000 ~ 11111可以代表所有的情况,转化为十进制就是0~(1<<5  - 1);

2.描述不同状态如何转移:

                   放的状态只能从不放的状态转移过来,所以dp[10000]只能从dp[00000] + W[1] 转移过来;dp[11000]可以从

                   dp[01000] + W[1]或者dp[10000] + W[2]转移过来.........

3.按一个方向求出该问题的解

                   该问题并不是一个典型的动态规划问题,所以不用管;

代码如下:

#include<stdio.h>
const int INF = 1 << 15;
int dp[INF + 10];
int dp1[INF+ 10] ;	//定义状态 
void print1(int num);		//打印在状态为num的时候的所有物品放与不放的情况 

/*
3 6
2 5
3 8
4 9				//一组样例 

0       0       0
1       5       2
01      8       3
11      13      5
001     9       4
101     14      6
011     17      7
111     22      9
*/ 
int main()
{
	int n,m;
	while(~scanf("%d%d",&n,&m))
	{
		int W[20],C[20];
		for(int i = 0; i < n; i++)
		scanf("%d %d",&C[i],&W[i]) ;
		int res = -1;
		for(int i = 0; i < (1 << n); i++)
		{
			for(int j = 0; j < n; j++)
			{
				if(!(i&(1 << j)))		//状态转移 
				{
					int temp = i | (1<<j);
					dp[temp] = dp[i] + W[j];		
					dp1[temp] = dp1[i] + C[j];
					
				}
			}
		}
		for(int i = 0; i < (1 << n); i++)
		{
			print1(i);
			printf("\t%d\t%d\n",dp[i],dp1[i]);		//打印出每种方案的情况,价值 和耗费的空间 
		}
		
	}
	return 0;
}
void print1(int num)
{
	int k= 0;
	if(num == 0)
	printf("0");
	for(;(1 << k) <= num; k++)
	{
		if(num & (1<<k))
		printf("1");
		else
		printf("0");
	}
}

上面涉及到二进制运算的问题可以看另一篇博客位运算及常用功能

从上面可以看出:状压dp的特点一般是规模比较小,n一般小于15。而且一般只有两种决策

————————————————————————————————————————————————————

例题1:POJ 2411

这个题规模比较小,而且每个方格只有两种状态,分别是被覆盖和未被覆盖;

所以我们考虑用状态压缩dp;

定义状态:

我们首先定义状态:dp[j][state],表示能到达第j列,且第j列所有方格的覆盖情况为state时的所有方法数;

这样我们通过这个状态把这个问题分为j个阶段(j代表列数),因为第j列放置的情况最多只能影响到j+1列。比如第j列放置

一个或多个1*2的方格。这样一种情况就会影响到j+1列;但是他最多影响到第j+1列,之后就不能再影响了。

这就是无后效性无后效性是保证能动态规划的关键。


状态转移:

当第i列第j行状态为0时,表示没有覆盖;当为1时,说明被覆盖了;

如果当前格没有被覆盖,说明我们至少可以放一个1*2的方格,如果当前列的下一行也没有被覆盖,那么我们可以放一个

2*1的方格;如果被覆盖, 那么我们继续往当前列的下一行遍历 ,直到把这一列遍历完; 在这个过程中 ,我们能求出

下一列的合法状态(也就是可以到达的状态),这是一个搜索的过程,至于为什么要搜索,请看下面:

我们把当前列每一种状态都进行搜索,看能不能找到从这种状态到其他状态的一种路径;如果存在,说明其他状态是

可以到达的。所以我们其实并不需要对每一种状态进行搜索,只需要对可以到达的状态进行搜索即可;


按一个方向求出该问题的解:

当前阶段总是影响下一阶段,所以我们应该按照阶段的方向进行求解,在这个题中是按列的方向求解;题目要求全部填

满,所以答案应该是dp[m+1][0];


代码如下:

#include<stdio.h>
#include<string.h>
#define mmset(a,b) memset(a,b,sizeof(a))
const int INF = 1 << 12 + 10;
long long dp[13][2100];
int n,m;
/*
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
Sample Output
1
0
1
2
3
5
144
51205
*/


/*搜索从第j列的state状态开始,它能到达第j+1列的哪些状态;
  i代表第i行,next代表它能到达第j+1列的next状态 
*/
void dfs(int i,int j,int state,int next);		
											    
int main()
{
	
	while(~scanf("%d%d",&n,&m) && (n+m))
	{
		if(n > m)	//交换两个变量 
		{
			n = n ^ m;
			m = n ^ m;
			n = n ^ m; 
		}
		mmset(dp,0);	//初始化 
		dp[1][0] = 1;
		
		for(int j = 1; j <= m; j++)		//状态转移 
		{
			for(int state = 0; state < (1 << n); state++)
			{
				//对能达到的状态进行搜索,看该状态能不能达到其他状态;
				if(dp[j][state] > 0)	 
				{
					dfs(0,j,state,0);
				}
			}
		} 
		printf("%lld\n",dp[m+1][0]);		//输出答案 
		
		
	}
	return 0;
} 

void dfs(int i,int j,int state, int next)
{
	if(i == n)
	{
		/*
		注意dp[i][j]代表的含义,就知道为什么
		dp[j+1][next] += dp[j][state]
		*/
		dp[j+1][next] += dp[j][state];		
		return;								
	}
	else
	{
		if((state&(1 << i) )== 0)	//当该格子没被覆盖说明可以放一个1*2的木板 
		{
			dfs(i+1,j,state,next | (1<< i));
		}
		/*
		当该格子没被覆盖且它下面的格子也没被覆盖 
		说明可以当一个2*1的木板
		*/ 
		if(i + 1 < n &&(state & (1 << i)) == 0 && (state & (1 << (i+1))) == 0)	
		{																		
			dfs(i+2,j,state,next);
		}
		if((state & (1 << i)) > 0)	//当该格子被覆盖时,说明这个格子什么都不能放 
		{
			dfs(i+1,j,state,next);
		}
	}
}

 

————————————————————————————————————————————————————

例题2:POJ 3254

可以发现这个题有如下特征,规模较小,每个方格只有两种状态,可以种玉米和不可以种玉米;

仍然考虑用状压dp;


定义状态:

定义状态dp[i][state]表示能到达第i行,且第i行的所有的种玉米和不种玉米的情况为state时的所有状态数。

种玉米代表1,不种玉米代表0;

分析这个状态定义,发现这个状态定义把整个问题分成了n个阶段(代表行数),并且这n个阶段遵循无后效性


状态转移:

当前阶段只受前一阶段的影响,当前阶段只能影响到后一阶段。所以状态转移就是把握住当前状态是如何影响后一

阶段的。在这个题中,我们会发现:

如果当前阶段的某列土地种了玉米,那么下个阶段的这列土地就不能种玉米。

另外,如果当前阶段某列土地的前一列土地种了玉米,那么这一列就不能再种玉米了。

需要注意的是,如果当前阶段的某一列可以种玉米,你可以有两种选择,种或不种。


按一个方向求解:

可以看出这个状态定义是按行数分了n个阶段,所以我们应该按照行数来进行求解,根据状态定义,结果是把最后

一行的所有可达到的状态的方法数加和即可。


代码如下:

#include<stdio.h>
#include<string.h>
#define mmset(a,b) memset(a,b,sizeof(a))

const int INF = 1 << 12 + 5;
int   dp[15][INF];
int data[15][15];
int n,m;		//行列 

/*
2 3
1 1 1
0 1 0
Sample Output
9
*/


/*
i代表当前行 
j代表当前列
state代表当前行(阶段)的状态 
next代表下一行(阶段)的可到达状态
flag代表是上一列是否种了玉米,如果种了玉米,flag =  1,否则等于0; 
*/ 
void dfs(int i,int j,int state,int next,int flag);

int main()
{
	while(~scanf("%d%d",&n,&m))
	{
		for(int i = 1; i <= n; i++)
		{
			for(int j = 0; j < m; j++)
			{
				scanf("%d",&data[i][j]);
			}
		}
		mmset(dp,0);		//初始化 
		dp[0][0] = 1;	
		
		/*
			遍历每个阶段的所有可达到状态,并搜索这种状态所能到达所有状态 。
			这是状态转移的过程 
		*/ 
		for(int i = 0; i < n; i++)	
		{
			for(int state = 0; state < (1<<m); state++)
			{
				if(dp[i][state] > 0)
				{
					dfs(i,0,state,0,0);
				}
			}
		}
		int ans = 0;
		/*
			求解,对最后一行所有可达到的状态的方法数加和,并存在变量ans中; 
		*/ 
		for(int state = 0; state < (1<<m); state++)
		{
			if(dp[n][state] > 0)
			{
				ans=(ans+dp[n][state])%100000000;
			}
		}
		printf("%d\n",ans);
	}	
	
	return 0;
}

void dfs(int i,int j,int state,int next,int flag)
{
	if(j == m) 
	{
		dp[i+1][next] = (dp[i+1][next] + dp[i][state])%100000000;
	}
	/*
	下面这段代码有点绕,可以种玉米是指客观条件,
	但种不种玉米是主观意愿。 
	*/ 
	else
	{
		//表示可以种玉米 
		if(data[i+1][j] == 1 && (state & (1<<j)) == 0 && flag== 0) 
		{
			if(flag == 0||flag == 1)    //不种玉米 
			{
 				dfs(i,j+1,state,next,0);
			}
			if(flag == 0)	//种玉米 
			{
				dfs(i,j+1,state,next | (1<<j),1);
			}
		}
		//不可以种玉米 
		else
		{
			dfs(i,j+1,state,next,0);
		}
	}
}

 

 

 

 

<think>嗯,用户想了解用Python中的状态压缩动态规划DP)解决旅行商问题(TSP)的详细方法。首先,我需要回忆一下TSP的基本概念。TSP是要找到一条最短的路径,让旅行商访问所有城市并回到起点,每个城市只访问一次。这属于NP难问题,所以需要高效的算法来处理,尤其是当城市数量较多时。 状态压缩DP通常用于处理态中包含集合的情况,比如访问过的城市集合。因为用二进制位来表示集合可以节省空间,例如,n个城市可以用n位的二进制数表示,每一位代表是否访问过该城市。这样的话,态可以表示为当前所在城市和已经访问过的城市集合。 接下来,我得考虑动态规划态定义。通常,dp[mask][i]表示当前已经访问过的城市集合为mask,并且最后停留在城市i时的最短路径长度。初始态应该是只访问了一个城市的情况,比如dp[1 << i][i] = 0,因为从城市i出发,还没有移动,所以距离为0。不过根据用户提供的引用[1],初始化每个景点j在只访问自己的态下的公交次数为0,即dp[j][1 << j] = 0。这里的公交次数可能对应路径长度,所以类似。 然后态转移方程应该是:对于每一个态mask和当前城市i,遍历所有未访问过的城市j,更新dp[mask | (1 << j)][j] = min(dp[mask | (1 << j)][j], dp[mask][i] + dist[i][j])。也就是说,从i到j,将j加入已访问集合,并更新最短路径。 接下来要考虑Python的实现。由于Python对于位运算的支持还不错,可以用字典或者二维数组来存储dp。不过考虑到空间问题,如果城市数量n较大,二维数组可能会占用太多内存。但TSP通常处理的是n较小的情况(比如n=15左右),所以可能还是可行的。 需要处理的问题包括如何遍历所有可能的mask,以及如何高效地进行态转移。另外,要注意mask的位数,比如n个城市,mask的范围是0到2^n -1。对于每个mask,需要检查哪些城市已经被访问过,然后找到下一个未访问的城市。 还需要给出具体的代码示例。比如,初始化一个二维数组dp,大小为(2^n, n),初始化为无穷大,然后设置初始态,接着遍历所有mask,对于每个mask中的当前城市i,找到未访问的城市j,进行态转移。 另外,用户提供的引用[2]提到了分支限界法使用优先队列来减少搜索空间,可能和这里的状态压缩DP不同,但可以提一下其他方法作为对比。引用[3]中的回溯法框架可能也相关,但DP更高效。 最后,需要考虑路径的起点和终点是否需要回到起点。在TSP中,通常要求回到起点,所以在计算完所有城市被访问的态后,还需要加上从最后一个城市回到起点的距离。或者,在代码实现中,最后一步需要处理这一步。 举个例子,假设有4个城市,距离矩阵给出各个城市之间的距离。初始化时,dp[0001][0] = 0,dp[0010][1] = 0,依此类推。然后对于每个mask,比如0001,当前城市0,那么遍历其他城市1、2、3,将mask更新为0011、0101、1001,对应的dp值加上距离。 在Python中,可以用一个二维列表来存储dp,例如dp = [[inf] * n for _ in range(1 << n)]。然后循环mask从1到(1 << n) -1,对于每个mask,检查每一位是否为1,找到当前城市i,然后遍历所有可能的j不在mask中的情况。 最后,得到所有城市都被访问过的mask(全1),然后找出最小的dp值,再加上从最后城市回到起点的距离,或者如果在态转移中已经考虑了回到起点的情况,那就可以直接取最小值。 可能的错误点:初始化是否正确,mask的遍历顺序是否正确(应该从小到大),以及如何处理最后回到起点的问题。需要仔细检查这些步骤。 然后,编写代码示例,包括距离矩阵的定义,dp数组的初始化,态转移的循环,以及最后结果的提取。同时,可能需要测试一个简单案例,比如3个城市,手动计算验证是否正确。 此外,用户可能需要了解时间复杂度和空间复杂度,以及优化方法,比如使用位运算加速,或者空间优化(例如使用滚动数组),但可能对于Python来说,空间优化不太容易,因为n超过20的话,2^20已经是百万级别,可能会占用较大内存。 总结来说,步骤是:问题分析,态定义,转移方程,初始化,遍历顺序,代码实现,结果处理,复杂度分析,以及可能的优化。</think>### Python状态压缩DP解决旅行商问题(TSP)详解 #### 1. 问题分析 旅行商问题(TSP)要求在$n$个城市中找到一条最短环路,访问每个城市恰好一次并返回起点。状态压缩动态规划通过二进制表示已访问城市集合,将时间复杂度优化到$O(n^2 \cdot 2^n)$[^2]。 #### 2. 态定义 定义二维数组$dp[mask][i]$: - $mask$:二进制数,第$j$位为1表示已访问城市$j$ - $i$:当前所在城市 - 值:从起点出发,经过$mask$对应城市后到达$i$的最小路径长度 #### 3. 态转移方程 $$dp[mask | (1 << j)][j] = \min\left(dp[mask | (1 << j)][j],\ dp[mask][i] + dist[i][j]\right)$$ 其中$j$是未访问城市(即$mask$的第$j$位为0) #### 4. 实现步骤 ```python import sys def tsp(dist): n = len(dist) total_mask = 1 << n INF = sys.maxsize # 初始化dp表:dp[mask][i] dp = [[INF] * n for _ in range(total_mask)] for i in range(n): dp[1 << i][i] = 0 # 初始态:只访问过城市i # 遍历所有态 for mask in range(total_mask): for i in range(n): if not (mask & (1 << i)): # 当前城市必须已访问 continue for j in range(n): if mask & (1 << j): # 目标城市必须未访问 continue new_mask = mask | (1 << j) dp[new_mask][j] = min(dp[new_mask][j], dp[mask][i] + dist[i][j]) # 最终结果需返回起点(假设起点是0) final_mask = (1 << n) - 1 return min(dp[final_mask][i] + dist[i][0] for i in range(n)) # 示例距离矩阵(4个城市) dist = [ [0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0] ] print(tsp(dist)) # 输出:80 (0->1->3->2->0) ``` #### 5. 关键点说明 1. **态初始化**:每个城市作为起点时路径长度为0[^1] 2. **掩码遍历顺序**:从小到大确保态依赖已计算 3. **路径闭合处理**:最终结果需加上返回起点的距离 4. **空间优化**:可使用滚动数组减少内存占用 #### 6. 复杂度分析 - 时间复杂度:$O(n^2 \cdot 2^n)$ - 空间复杂度:$O(n \cdot 2^n)$
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值