《机器学习技法》第5课笔记 核函数逻辑回归

课程来源:林轩田《机器学习技法》
课程地址: https://www.bilibili.com/video/av12469267/?p=1

1. wrap-up

2. 可以将条件转化写入方程中,使我们更容易理解 soft kernel

3. 这时候会发现很有趣的,我们其实在做的就是正则化。
之所以不从正则化方程的角度讲解soft kernel,是因为这个方程不容易导去QP问题

4. soft kernel中,C大,入小,更小的正则化


5. 线性回归、SVM、逻辑斯特回归的01error分析,会发现SVM和lr很像

6. SVM和lr都容易优化、有正则化项、都是存在01error上限下对正确率进行优化。
可以把正则化的lr看成是近似的SVM,那么SVM可以看成近似的lr么?

【20-25待学,先跳过学后面的】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值