课程来源:林轩田《机器学习技法》
课程地址:
https://www.bilibili.com/video/av12469267/?p=1
1. wrap-up
2. 可以将条件转化写入方程中,使我们更容易理解 soft kernel
3. 这时候会发现很有趣的,我们其实在做的就是正则化。
之所以不从正则化方程的角度讲解soft kernel,是因为这个方程不容易导去QP问题
4. soft kernel中,C大,入小,更小的正则化
5. 线性回归、SVM、逻辑斯特回归的01error分析,会发现SVM和lr很像
6. SVM和lr都容易优化、有正则化项、都是存在01error上限下对正确率进行优化。
可以把正则化的lr看成是近似的SVM,那么SVM可以看成近似的lr么?
【20-25待学,先跳过学后面的】