1.找出初始状态和目标状态。明显,目标状态就是排序后的状态。
2.画出置换群,在里面找循环。例如,数字是8 4 5 3 2 7,目标状态是2 3 4 5 7 8,能写为两个循环:(8 2 7)(4 3 5)。
3.观察其中一个循环,明显地,要使交换代价最小,应该用循环里面最小的数字2,去与另外的两个数字,7与8交换。这样交换的代价是:
sum - min + (len - 1) * min
化简后为:
sum + (len - 2) * min
其中,sum为这个循环所有数字的和,len为长度,min为这个环里面最小的数字。
4.考虑到另外一种情况,我们可以从别的循环里面调一个数字,进入这个循环之中,使交换代价更小。例如初始状态:1 8 9 7 6
可分解为两个循环:(1)(8 6 9 7),明显,第二个循环为(8 6 9 7),最小的数字为6。我们可以抽调整个数列最小的数字1进入这个循环。使第二个循环变为:(8 1 9 7)。让这个1完成任务后,再和6交换,让6重新回到循环之后。这样做的代价明显是:
sum + min + (len + 1) * smallest
其中,sum为这个循环所有数字的和,len为长度,min为这个环里面最小的数字,smallest是整个数列最小的数字。
5.因此,对一个循环的排序,其代价是sum - min + (len - 1) * min和sum + min + (len + 1) * smallest之中小的那个数字。但这里两个公式还不知道怎么推出来的。
6.我们在计算循环的时候,不需要记录这个循环的所有元素,只需要记录这个循环的最小的数及其和。
7.在储存数目的时候,我们可以使用一个hash结构,将元素及其位置对应起来,以达到知道元素,可以快速反查元素位置的目的。这样就不必要一个个去搜索。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 10010;
int a[maxn],b[maxn],dir[100005];
int vis[maxn];
int main()
{
int n;
while(scanf("%d",&n) != EOF){
for(int i = 0; i < n; i++){
scanf("%d",&a[i]);
b[i] = a[i];
dir[a[i]] = i;
}
sort(b,b+n);
memset(vis,0,sizeof(vis));
int ans = 0;
for(int i = 0; i < n; i++){
if(!vis[i]){
vis[i] = 1;
int id = i,start = a[i];
int len = 1,min_ = a[i],sum = a[i];
///找出置换的循环;
while(1){
if(b[id] == start) break;
sum += b[id];
len ++;
min_ = min(min_,b[id]);
id = dir[b[id]];
vis[id] = 1;
}
///求出在当前这个循环中的最小花费;
int tmp = min(min_*(len-1) + sum-min_, b[0]*(len+1) + sum + min_);
ans += tmp;
}
}
printf("%d\n",ans);
}
return 0;
}