中国剩余定理 互质与不互质两种

1.什么是中国剩余定理?

这个问题困扰了窝好久,看了好多书上的解释,但都很片面地只进行了部分阐述...搞得我也是迷乱..

最后发现还是百度百科讲的最靠谱了...(也可能是看的多了自己就懂了吧..

百度百科上的所给的证明非常棒..浅显易懂!(窝都看懂了...

一发链接:孙子定理

然后还是说一下我的理解吧:下面这个一元线性同余方程组

                                  

对于这个方程,判断是否有解,如果有解,则求x的值。

首先若有解,则有很多个解(看百度百科中的证明..逃..

那么有节的条件是什么呢  答:整数m1,m2,m3……mn两两互质

解是什么?  方程组

   
的通解形式为
 
 

                    其中: 

   
是整数 m 1 , m 2 , ... , m n 的乘积,

                                           
是除了 m i 以外的 n - 1个整数的乘积。

                                         

   
   
   
的数论倒数(即逆元..)
   

                       
*注意: 在模
   
的意义下,方程组
   
只有一个解:


具体证明

 还是要看一下 百度百科的

2.对于这种m[]数组元素两两互质的情况的算法实现:

/*
    fzu 1402
    Andy建立了ai个猪圈,有bi头猪没有去处
    输出包含一个正整数,即为Andy家至少养猪的数目
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

long long aa[15],bb[15];

long long extgcd(long long a, long long b, long long &x, long long &y){
    long long d = a;
    if(b != 0){
        d = extgcd(b, a%b, y, x);
        y -= (a / b) * x;
    }
    else{
        x = 1; y = 0;
    }
    return d;
}
// 注意使用方法, 除以mi 余数是ai, 传参数的时候容易传错, 倒过来再试试
// 求解模线性方程组x = ai (mod mi)
long long China(long long a[], long long m[], int k)
{
    long long M = 1;
    long long ans = 0;
    for(int i = 0; i < k; i++)
        M *= m[i];
    for(int i=0; i<k; i++){
        long long x, y;
        long long Mi = M / m[i];
        extgcd(Mi, m[i], x, y);
        ans = (ans + Mi * x * a[i]) % M;
    }
    if(ans < 0)
        ans += M;
    return ans;
}

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i = 0; i < n; i++)
            scanf("%I64d %I64d",&aa[i],&bb[i]);
        printf("%I64d\n",China(bb, aa, n));
    }
    return 0;
}

3. 对于m[]数组元素 并非 两两互质的情况的算法实现:

/*
    hdu 1573
    求在小于等于N的正整数中有多少个X满足:
    X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL __int64
#define M 10
int N;

long long extgcd(long long a, long long b, long long &x, long long &y){
    long long d = a;
    if(b != 0){
        d = extgcd(b, a%b, y, x);
        y -= (a / b) * x;
    }
    else{
        x = 1; y = 0;
    }
    return d;
}
long long China(long long b[], long long n[], int num){
    bool flag = false;
    long long bb, d, t, k;
    long long n1 = n[0], n2;
    long long b1 = b[0], b2;
    long long x, y;
    for(int i = 1; i < num; i++){
        n2 = n[i], b2 = b[i];
        bb = b2 - b1;
        d = extgcd(n1, n2, x, y);
        if (bb % d){            //模线性解k1时发现无解
            flag = true;
            break;
        }
        k = bb / d * x;         //相当于求上面所说的k1【模线性方程】
        t = n2 / d;
        if (t < 0) t = -t;
        k = (k % t + t) % t;    //相当于求上面的K`
        b1 = b1 + n1*k;
        n1 = n1 / d * n2;
    }
    if (flag)
        return 0;              //无解
/******************求正整数解******************/
    if (b1 == 0)                //如果解为0,而题目要正整数解,显然不行
        b1 = n1;                //n1刚好为所有ni的最小公倍数,就是解了
                                //形成的解:b1, b1+n1, b1+2n1,..., b1+xni...
/******************求正整数解******************/
    if (b1 > N)
        return 0;
    return (N-b1)/n1+1;
}

int main()
{
    int t, num, i, cc = 1;
    LL b[M], n[M];
    scanf ("%d", &t);
    while (t--)
    {
        scanf ("%d%d", &N, &num);
        for (i = 0; i < num; i++)
            scanf ("%I64d", n+i);
        for (i = 0; i < num; i++)
            scanf ("%I64d", b+i);
        printf ("%I64d\n", China(b, n, num));
    }
    return 0;
}

模板:

long long extgcd(long long a, long long b, long long &x, long long &y){
    long long d = a;
    if(b != 0){
        d = extgcd(b, a%b, y, x);
        y -= (a / b) * x;
    }
    else{
        x = 1; y = 0;
    }
    return d;
}

//求模线性方程组x = bi (mod ni), ni可以不互质, num表示方程的数目
long long China(long long b[], long long n[], int num){
    bool flag = false;
    long long bb, d, t, k;
    long long n1 = n[0], n2;
    long long b1 = b[0], b2;
    long long x, y;
    for(int i = 1; i < num; i++){
        n2 = n[i], b2 = b[i];
        bb = b2 - b1;
        d = extgcd(n1, n2, x, y);
        if (bb % d){            //模线性解k1时发现无解
            flag = true;
            break;
        }
        k = bb / d * x;         //相当于求上面所说的k1【模线性方程】
        t = n2 / d;
        if (t < 0) t = -t;
        k = (k % t + t) % t;    //相当于求上面的K`
        b1 = b1 + n1*k;
        n1 = n1 / d * n2;
    }
    if (flag)
        return -1;               //无解返回-1

    return ((b1%n1)+n1)%n1;     //这是返回的最小非负整数解
                                //形成的所有解:b1, b1+n1, b1+2n1,..., b1+xni...
/*
    下面是求不大于N的解的个数
    if (b1 > N)
        return 0;
    return (N-b1)/n1+1;
*/
}

中国剩余定理就先学习到这里吧~遇到题目再补充~





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值