[LeetCode] 124. Binary Tree Maximum Path Sum

题:https://leetcode.com/problems/binary-tree-maximum-path-sum/description/

#题目

Given a non-empty binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Example 1:

Input: [1,2,3]

   1
  / \
 2   3

Output: 6
Example 2:

Input: [-10,9,20,null,null,15,7]

-10
/
9 20
/
15 7

Output: 42

思路

该类问题往往都需要往动态规划上面靠,写出状态转移方程。
在这个问题中,最重要的是 求解的量,不是状态转移方程所需要的结果。它只是结果的一部分。

也算是 动态规划,是以 递归的方式
递归的状态:int childSum(TreeNode root) :该结点且向左或右子树延长后的 最大PathSum。
递归初始条件 :
if(root == null)
return 0;

递归转移方程:

    int lchildSum = childSum(root.left);
    int rchildSum = childSum(root.right);
    该访问根的子树 最大pathSum,若子树为负数,那么就舍弃。
	int curMaxPathSum = Math.max(0,lchildSum) +  Math.max(0,rchildSum) + root.val;
    iMaxPathSum =Math.max(iMaxPathSum,curMaxPathSum);
    
   	则递归转移为:
   	左右 子孩子的 childSum 中 较大的那个 ,且大于0,再加上 当前 结点数。
    return Math.max(0,Math.max(lchildSum,rchildSum)) + root.val;

code

python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def getPathSum(self,root):
        if root == None:
            return 0
        left = max(0,self.getPathSum(root.left))
        right = max(0,self.getPathSum(root.right))
        nodeSum = left+right+root.val
        if nodeSum > self.maxSum:
            self.maxSum = nodeSum
        return max(left,right)+root.val
    
    def maxPathSum(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if root == None:
            return 0
        self.maxSum = root.val
        self.getPathSum(root)
        return self.maxSum
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    int iMaxPathSum = Integer.MIN_VALUE;
    public int childSum(TreeNode root){
        if(root == null)
            return 0;
        int lchildSum = childSum(root.left);
        int rchildSum = childSum(root.right);
        int curMaxPathSum = Math.max(0,lchildSum) +  Math.max(0,rchildSum) + root.val;
        iMaxPathSum =Math.max(iMaxPathSum,curMaxPathSum);
        return Math.max(0,Math.max(lchildSum,rchildSum)) + root.val;
    }
    
    public int maxPathSum(TreeNode root) {
        childSum(root);
        return iMaxPathSum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值