题:https://leetcode.com/problems/top-k-frequent-words/
题目大意
对于 string[] words,输出 出现频率前k高的 word,顺序 为 word 出现的频率 由高到低 ,频率相同的 word 按 字符排序。
思路
其实是对words中的所有word进行一个排序。
排序有两个规则:
1.word 在 words中出现的次数。
2.在相同 出现 次数的word中 按 字符 排序。
先对 words 使用 map 进行 计数。
然后 维护一个小堆,这个堆 的排序 和 题目要求排序 完全相反,大小为k。
然后将 map 中所有 entry往 小堆中放。
- 若 小堆 没满,往进填。
- 当 小堆 满了,将 堆顶 entry 和 entry 比较,若entry 大于 堆顶 时,将 堆顶 poll(),再添加 entry。
最后将 堆 中数据 倒序放入 res中,因为堆中排序 为倒序。
class Solution {
public List<String> topKFrequent(String[] words, int k) {
Map<String ,Integer> map = new HashMap<>();
for(String word: words){
map.put(word,map.getOrDefault(word,0)+1);
}
PriorityQueue<Map.Entry<String , Integer>> pq = new PriorityQueue<>(new Comparator<Map.Entry<String,Integer>>(){
public int compare(Map.Entry<String,Integer> o1,Map.Entry<String,Integer> o2){
if(o1.getValue() == o2.getValue())
return o2.getKey().compareTo(o1.getKey());
return o1.getValue() - o2.getValue();
}
});
for(Map.Entry<String,Integer> entry: map.entrySet()){
if(pq.size()<k)
pq.add(entry);
else{
if( (pq.peek().getValue() < entry.getValue()) || (pq.peek().getValue() == entry.getValue() &&entry.getKey().compareTo( pq.peek().getKey())<0)){
pq.poll();
pq.add(entry);
}
}
}
List<String> res = new LinkedList<>();
int pqlen = pq.size();
for(int i = 0; i < pqlen ; i++)
res.add(0,pq.poll().getKey());
return res;
}
}
修改Comparator ,使更 规范
class Solution {
public List<String> topKFrequent(String[] words, int k) {
Map<String ,Integer> map = new HashMap<>();
for(String word: words){
map.put(word,map.getOrDefault(word,0)+1);
}
PriorityQueue<Map.Entry<String , Integer>> pq = new PriorityQueue<>(new Comparator<Map.Entry<String,Integer>>(){
public int compare(Map.Entry<String,Integer> o1,Map.Entry<String,Integer> o2){
int res;
if(o1.getValue() == o2.getValue())
res = o1.getKey().compareTo(o2.getKey());
else
res=o2.getValue() - o1.getValue();
return -res;
}
});
for(Map.Entry<String,Integer> entry: map.entrySet()){
if(pq.size()<k)
pq.add(entry);
else{
if( (pq.peek().getValue() < entry.getValue()) || (pq.peek().getValue() == entry.getValue() &&entry.getKey().compareTo( pq.peek().getKey())<0)){
pq.poll();
pq.add(entry);
}
}
}
List<String> res = new LinkedList<>();
int pqlen = pq.size();
for(int i = 0; i < pqlen ; i++)
res.add(0,pq.poll().getKey());
return res;
}
}
注意 语言的使用
note:
-
PriorityQueue 中 new Comparator(){
public int compare(T o1, To2){
}
} -
map 中排序 ,使用 entry 。 PriorityQueue<Map.Entry<String,Integer>>
-
qp.add(int index, ele)
-
pq.poll()