java kafka写入数据到HDFS

安装kafka,见我以前的博文

https://blog.csdn.net/u013385018/article/details/80529063

向Hdfs写入文件,控制台会输出以下错误信息:

Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=s00356746, access=WRITE, inode="/user":root:supergroup:drwxr-xr-x

从中很容易看出是因为当前执行Spark Application的用户没有Hdfs“/user”目录的写入权限。这个问题无论是在Windows下还是Linux下提交Spark Application都经常会遇到

如果是欧拉操作系统,需做如下处理

chattr -i etc/passwd

chattr -i /etc/shadow

chattr -i /etc/group

chattr -i /etc/passwd-

chattr -i /etc/shadow-

chattr -i /etc/group-

lsattr passwd*

都需要没有   i   属性

  • 如果是Linux环境,将执行操作的用户添加到supergroup用户组。

groupadd supergroup
usermod -a -G supergroup s00356746

如果是Windows用户,在hdfs namenode所在机器添加新用户,用户名为执行操作的Windows用户名,然后将此用户添加到supergroup用户组。

adduser s00356746
groupadd supergroup
usermod -a -G supergroup s00356746

这样,以后每次执行类似操作可以将文件写入Hdfs中属于s00356746用户的目录内,而不会出现上面的Exception。

生产者代码

import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class KafkaProducer  {
    private final Producer<String, String> producer;
    public final static String TOPIC = "test";

    private KafkaProducer(){
        Properties props = new Properties();
        //此处配置的是kafka的端口
        props.put("metadata.broker.list", "10.175.118.105:9092");
        //配置value的序列化类
        props.put("serializer.class", "kafka.serializer.StringEncoder");
        //配置key的序列化类
        props.put("key.serializer.class", "kafka.serializer.StringEncoder");
        props.put("request.required.acks","-1");
        producer = new Producer<String, String>(new ProducerConfig(props));
    }

    void produce() {
        int messageNo = 1000;
        final int COUNT = 10000;
        while (messageNo < COUNT) {
            String key = String.valueOf(messageNo);
            String data = "hello kafka message " + key;
            producer.send(new KeyedMessage<String, String>(TOPIC, key ,data));
            System.out.println(data);
            messageNo ++;
        }
    }

    public static void main( String[] args )
    {
        new KafkaProducer().produce();
    }

}

kafka写入Hdfs

package com.huawei.hwclouds.dbs.ops.huatuo.diagnosis.service.impl;

import com.huawei.hwclouds.dbs.common.exception.DBSErrorCode;
import com.huawei.hwclouds.dbs.common.exception.DBSException;
import com.huawei.hwclouds.dbs.constants.VolumeIoType;
import com.huawei.hwclouds.dbs.coremodel.model.dto.DBSInstanceDto;
import com.huawei.hwclouds.dbs.coremodel.model.dto.DBSNodeDto;
import com.huawei.hwclouds.dbs.coremodel.resource.dto.DBSResourceSpecDto;
import com.huawei.hwclouds.dbs.coremodel.resource.dto.DBSVolumeDto;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.stream.Collectors;

public class KafkaToHdfs extends Thread {
    private static String kafkaHost = null;
    private static String kafkaGroup = null;
    private static String kafkaTopic = null;
    private static String hdfsUri = null;
    private static String hdfsDir = null;
    private static String hadoopUser = null;
    private static Boolean isDebug = false;

    private ConsumerConnector consumer = null;

    private static Configuration hdfsConf = null;
    private static FileSystem hadoopFS = null;

    public static void main(String[] args) {
//        if (args.length < 6) {
//            useage();
//            System.exit(0);
//        }
//        Map<String, String> user = new HashMap<String, String>();
//        user = System.getenv();
//        user.put("HADOOP_USER_NAME","hadoop");
//        if (user.get("HADOOP_USER_NAME") == null) {
//            System.out.println("请设定hadoop的启动的用户名,环境变量名称:HADOOP_USER_NAME,对应的值是hadoop的启动的用户名");
//            System.exit(0);
//        } else {
//            hadoopUser = user.get("HADOOP_USER_NAME");
//        }
        hadoopUser = "hadoop";
        init(args);

        System.out.println("开始启动服务...");

        hdfsConf = new Configuration();
        try {
            hdfsConf.set("fs.defaultFS", hdfsUri);
            hdfsConf.set("dfs.support.append", "true");
            hdfsConf.set("dfs.client.block.write.replace-datanode-on-failure.policy", "NEVER");
            hdfsConf.set("dfs.client.block.write.replace-datanode-on-failure.enable", "true");
        } catch (Exception e) {
            System.out.println(e);
        }

        //创建好相应的目录
        try {
            hadoopFS = FileSystem.get(hdfsConf);
            //如果hdfs的对应的目录不存在,则进行创建
            if (!hadoopFS.exists(new Path("/" + hdfsDir))) {
                hadoopFS.mkdirs(new Path("/" + hdfsDir));
            }
            hadoopFS.close();
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }

        KafkaToHdfs selfObj = new KafkaToHdfs();
        selfObj.start();

        System.out.println("服务启动完毕,监听执行中");
    }

    public void run() {
        Properties props = new Properties();
        props.put("zookeeper.connect", kafkaHost);
        props.put("group.id", kafkaGroup);

        props.put("zookeeper.session.timeout.ms", "10000");
        props.put("zookeeper.sync.time.ms", "200");
        props.put("auto.commit.interval.ms", "1000");
        props.put("auto.offset.reset", "smallest");
        props.put("format", "binary");
        props.put("auto.commit.enable", "true");
        props.put("serializer.class", "kafka.serializer.StringEncoder");

        ConsumerConfig consumerConfig = new ConsumerConfig(props);
        this.consumer = Consumer.createJavaConsumerConnector(consumerConfig);

        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(kafkaTopic, new Integer(1));
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        KafkaStream<byte[], byte[]> stream = consumerMap.get(kafkaTopic).get(0);
        ConsumerIterator<byte[], byte[]> it = stream.iterator();

        while (it.hasNext()) {
            String tmp = new String(it.next().message());
            String fileContent = null;

            if (!tmp.endsWith("\n"))
                fileContent = new String(tmp + "\n");
            else
                fileContent = tmp;

            debug("receive: " + fileContent);

            try {
                hadoopFS = FileSystem.get(hdfsConf);

                String fileName = "/" + hdfsDir + "/" +
                        (new SimpleDateFormat("yyyy-MM-dd").format(Calendar.getInstance().getTime())) + ".txt";

                Path dst = new Path(fileName);

                if (!hadoopFS.exists(dst)) {
                    FSDataOutputStream output = hadoopFS.create(dst);
                    output.close();
                }

                InputStream in = new ByteArrayInputStream(fileContent.getBytes("UTF-8"));
                OutputStream out = hadoopFS.append(dst);
                IOUtils.copyBytes(in, out, 4096, true);

            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                try {
                    hadoopFS.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
        consumer.shutdown();
    }

    private static void init(String[] args) {
        kafkaHost = "10.175.118.105:2182";
        kafkaGroup = "test-consumer-group";
        kafkaTopic = "test";
        hdfsUri = "hdfs://10.175.118.105:9000";
        hdfsDir = "shxsh";
        if (args.length > 5) {
            if (args[5].equals("true")) {
                isDebug = true;
            }
        }

        debug("初始化服务参数完毕,参数信息如下");
        debug("KAFKA_HOST: " + kafkaHost);
        debug("KAFKA_GROUP: " + kafkaGroup);
        debug("KAFKA_TOPIC: " + kafkaTopic);
        debug("HDFS_URI: " + hdfsUri);
        debug("HDFS_DIRECTORY: " + hdfsDir);
        debug("HADOOP_USER: " + hadoopUser);
        debug("IS_DEBUG: " + isDebug);
    }

    private static void debug(String str) {
        if (isDebug) {
            System.out.println(str);
        }
    }

    private static void useage() {
        System.out.println("* kafka写入到hdfs的Java工具使用说明 ");
        System.out.println("# java -cp kafkatohdfs.jar KafkaToHdfs KAFKA_HOST KAFKA_GROUP KAFKA_TOPIC HDFS_URI HDFS_DIRECTORY IS_DEBUG");
        System.out.println("*  参数说明:");
        System.out.println("*   KAFKA_HOST      : 代表kafka的主机名或IP:port,例如:namenode:2181,datanode1:2181,datanode2:2181");
        System.out.println("*   KAFKA_GROUP     : 代表kafka的组,例如:test-consumer-group");
        System.out.println("*   KAFKA_TOPIC     : 代表kafka的topic名称 ,例如:usertags");
        System.out.println("*   HDFS_URI        : 代表hdfs链接uri ,例如:hdfs://namenode:9000");
        System.out.println("*   HDFS_DIRECTORY  : 代表hdfs目录名称 ,例如:usertags");
        System.out.println("*  可选参数:");
        System.out.println("*   IS_DEBUG        : 代表是否开启调试模式,true是,false否,默认为false");
    }
}




阅读更多
个人分类: 大数据spark
上一篇单机安装hadoop
下一篇ubuntu安装tpcc-mysql以及使用
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭