解题思路:
一只青蛙一次可以跳上1级台阶,也可以跳上两级。现在需要求跳上n级台阶总共有多少种跳法。把n级台阶的跳的次数看成是n的函数,即为f(n),当n>2时,第一次跳有两种跳法,若第一次跳1级,则该次跳法数目为后面剩下的n-1级台阶的跳法数目f(n-1)。若第一次跳2级,则该次跳法数目为后面剩下的n-2级台阶的跳法数目f(n-2)。所以f(n)=f(n-1) + f(n-2),即相当于斐波那契数列。
public class Solution {
public int JumpFloor(int target) {
//青蛙跳台阶,一次可以跳上1级台阶,也可以跳上2级台阶
if (target == 1) {
return 1;
}
if(target == 2) {
return 2;
}
//一个n级台阶,第一次跳有两种选择,
//一是第一次跳1级,那么跳法数目等于后面剩下的n-1级台阶的跳法数目
//二是第一次跳2级,那么跳法数目等于后面剩下的n-2级台阶的跳法数目
//一个n级台阶总的跳法数目为f(n-1) + f(n-2),相当于斐波那契数列
int first = 1;
int last = 2;
int sum = 0;
for (int i = 3; i <= target; i++) {
sum = first + last;
//将上次的last作为下一次的first
first = last;
//将上次的结果作为last
last = sum;
}
return sum;
}
}