曲线定义分析

OCC中存在贝塞尔曲线和B样条曲线,对于两个曲线使用场景和公式、参数通过一段时间的学习使用总结一下:

1、使用场景:

贝塞尔曲线

在精度控制方面表现优异,特别适用于那些要求 精确通过控制点 的场合。它通常用于 投影或偏执的几何拟合,以及一些要求较高精度的设计应用。

NURBS 曲线

在OCC中NURBS是B样条曲线,提供了更高的灵活性,特别适合于 需要光顺过渡或复杂曲线建模 的场合。NURBS 曲线的灵活性来自于 权重和节点向量,这使得它能够实现更平滑的曲线过渡,适合需要 光滑、连续 曲线的应用。

2、曲线特征

贝塞尔曲线

控制点在曲线上,阶数、权重、节点向量都是固定的

NURBS 曲线

控制点不在曲线上,阶数、权重、节点向量都是变换的

3、参数理解

贝塞尔曲线

通过控制点坐标值定义参数,如控制点:(0, 0, 0), (1, 1, 0), (2, 0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

和光同尘 、Y_____

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值