前言
最近多个项目需要接入人脸识别功能,之前的方案是使用百度云api集成,但是后续部分项目是内网部署及使用,考虑到接入复杂程度及收费等多种因素,决定参考开源方案自己搭建,保证服务的稳定性与可靠性
项目地址:https://gitee.com/code2roc/fastface
设计
经过检索对别多个方案后,使用了基于seetaface6+springboot的方式进行搭建,能够无缝接入应用
seetaface6是中科视拓最新开源的商业正式版本,包含人脸识别的基本能力:人脸检测、关键点定位、人脸识别,同时增加了活体检测、质量评估、年龄性别估计
官网地址:https://github.com/SeetaFace6Open/index
使用对接的sdk是tracy100大神的封装,支持 jdk8-jdk14,支持windows和Linux,无需考虑部署问题,直接使用jar包实现业务即可,内部同时封装了bean对象spring能够开箱即用
官网地址:https://github.com/tracy100/seetaface6SDK
系统目标实现人脸注册,人脸比对,人脸查找基础功能即可
实现
引用jar包
<dependency>
<groupId>com.seeta.sdk</groupId>
<artifactId>seeta-sdk-platform</artifactId>
<scope>system</scope>
<version>1.2.1</version>
<systemPath>${project.basedir}/lib/seetaface.jar</systemPath>
</dependency>
bean对象注册
FaceDetectorProxy为人脸检测bean,能够检测图像中是否有人脸
FaceRecognizerProxy为人脸比对bean,能够比对两张人脸的相似度
FaceLandmarkerProxy为人脸关键点bean,能够检测人脸的关键点,支持5个点和68个点
@Configuration
public class FaceConfig {
@Value("${face.modelPath}")
private String modelPath;
@Bean
public FaceDetectorProxy faceDetector() throws FileNotFoundException {
SeetaConfSetting detectorPoolSetting = new SeetaConfSetting(
new SeetaModelSetting(0, new String[]{modelPath + File.separator + "face_detector.csta"}, SeetaDevice.SEETA_DEVICE_CPU));
FaceDetectorProxy faceDetectorProxy = new FaceDetectorProxy(detectorPoolSetting);
return faceDetectorProxy;
}
@Bean
public FaceRecognizerProxy faceRecognizer() throws FileNotFoundException {
SeetaConfSetting detectorPoolSetting = new SeetaConfSetting(
new SeetaModelSetting(0, new String[]{modelPath + File.separator + "face_recognizer.csta"}, SeetaDevice.SEETA_DEVICE_CPU));
FaceRecognizerProxy faceRecognizerProxy = new FaceRecognizerProxy(detectorPoolSetting);
return faceRecognizerProxy;
}
@Bean
public FaceLandmarkerProxy faceLandmarker() throws FileNotFoundException {
SeetaConfSetting detectorPoolSetting = new SeetaConfSetting(
new SeetaModelSetting(0, new String[]{modelPath + File.separator + "face_landmarker_pts5.csta"}, SeetaDevice.SEETA_DEVICE_CPU));
FaceLandmarkerProxy faceLandmarkerProxy = new FaceLandmarkerProxy(detectorPoolSetting);
return faceLandmarkerProxy;
}
}
在使用相关bean对象时,需要进行library的本地注册,指定cpu还是gpu模式
LoadNativeCore.LOAD_NATIVE(SeetaDevice.SEETA_DEVICE_CPU)
人脸检测
public FaceEnum.CheckImageFaceStatus getFace(BufferedImage image) throws Exception {
SeetaImageData imageData = SeetafaceUtil.toSeetaImageData(image);
SeetaRect[] detects = faceDetectorProxy.detect(imageData);
if (detects.length == 0) {
return FaceEnum.CheckImageFaceStatus.NoFace;
} else if (detects.length == 1) {
return FaceEnum.CheckImageFaceStatus.OneFace;
} else {
return FaceEnum.CheckImageFaceStatus.MoreFace;
}
}
人脸比对
public FaceEnum.CompareImageFaceStatus compareFace(BufferedImage source, BufferedImage compare) throws Exception {
float[] sourceFeature = extract(source);
float[] compareFeature = extract(compare);
if (sourceFeature != null && compareFeature != null) {
float calculateSimilarity = faceRecognizerProxy.calculateSimilarity(sourceFeature, compareFeature);
System.out.printf("相似度:%f\n", calculateSimilarity);
if (calculateSimilarity >= CHECK_SIM) {
return FaceEnum.CompareImageFaceStatus.Same;
} else {
return FaceEnum.CompareImageFaceStatus.Different;
}
} else {
return FaceEnum.CompareImageFaceStatus.LostFace;
}
}
人脸关键点
private float[] extract(BufferedImage image) throws Exception {
SeetaImageData imageData = SeetafaceUtil.toSeetaImageData(image);
SeetaRect[] detects = faceDetectorProxy.detect(imageData);
if (detects.length > 0) {
SeetaPointF[] pointFS = faceLandmarkerProxy.mark(imageData, detects[0]);
float[] features = faceRecognizerProxy.extract(imageData, pointFS);
return features;
}
return null;
}
人脸数据库
- 注册
public long registFace(BufferedImage image) throws Exception {
long result = -1;
SeetaImageData imageData = SeetafaceUtil.toSeetaImageData(image);
SeetaRect[] detects = faceDetectorProxy.detect(imageData);
if (detects.length > 0) {
SeetaPointF[] pointFS = faceLandmarkerProxy.mark(imageData, detects[0]);
result = faceDatabase.Register(imageData, pointFS);
faceDatabase.Save(dataBasePath);
}
return result;
}
- 查找
public long queryFace(BufferedImage image) throws Exception {
long result = -1;
SeetaImageData imageData = SeetafaceUtil.toSeetaImageData(image);
SeetaRect[] detects = faceDetectorProxy.detect(imageData);
if (detects.length > 0) {
SeetaPointF[] pointFS = faceLandmarkerProxy.mark(imageData, detects[0]);
long[] index = new long[1];
float[] sim = new float[1];
result = faceDatabase.QueryTop(imageData, pointFS, 1, index, sim);
if (result > 0) {
float similarity = sim[0];
if (similarity >= CHECK_SIM) {
result = index[0];
} else {
result = -1;
}
}
}
return result;
}
- 删除
public long deleteFace(long index) throws Exception {
long result = faceDatabase.Delete(index);
faceDatabase.Save(dataBasePath);
return result;
}
拓展
集成了face-api.js,实现简单的张张嘴,摇摇头活体检测,精确度不是很高,作为一个参考选项
官网地址:https://github.com/justadudewhohacks/face-api.js
加载模型
Promise.all([
faceapi.loadFaceDetectionModel('models'),
faceapi.loadFaceLandmarkModel('models')
]).then(startAnalysis);
function startAnalysis() {
console.log('模型加载成功!');
var canvas1 = faceapi.createCanvasFromMedia(document.getElementById('showImg'))
faceapi.detectSingleFace(canvas1).then((detection) => {
if (detection) {
faceapi.detectFaceLandmarks(canvas1).then((landmarks) => {
console.log('模型预热调用成功!');
})
}
})
}
打开摄像头
<video id="video" muted playsinline></video>
function AnalysisFaceOnline() {
var videoElement = document.getElementById('video');
// 检查浏览器是否支持getUserMedia API
if (navigator.mediaDevices.getUserMedia) {
navigator.mediaDevices.getUserMedia({ video: { facingMode: "user" } }) // 请求视频流
.then(function(stream) {
videoElement.srcObject = stream; // 将视频流设置到<video>元素
videoElement.play();
})
.catch(function(err) {
console.error("获取摄像头错误:", err); // 处理错误
});
} else {
console.error("您的浏览器不支持getUserMedia API");
}
}
捕捉帧计算关键点
function vedioCatchInit() {
video.addEventListener('play', function() {
function captureFrame() {
if (!video.paused && !video.ended) {
// 设置canvas的尺寸与视频帧相同
canvas.width = 200;
canvas.height = 300;
// 绘制当前视频帧到canvas
context.drawImage(video, 0, 0, canvas.width, canvas.height);
// 将canvas内容转换为data URL
//outputImage.src = canvas.toDataURL('image/png');
// 可以在这里添加代码将data URL发送到服务器或进行其他处理
faceapi.detectSingleFace(canvas).then((detection) => {
if (detection) {
faceapi.detectFaceLandmarks(canvas).then((landmarks) => {
})
} else {
console.log("no face")
}
})
// 递归调用以持续捕获帧
setTimeout(captureFrame, 100); // 每500毫秒捕获一次
}
}
captureFrame(); // 开始捕获帧
});
}