假设两个数x和y,则有:
方法1,算术运算(加减):
x=x+y;
//x暂存两数之和
y=x-y;
//y为两数之和减去y,即原来的x
x=x-y;
//x为两数之和减去现在的y(原来的x),变成原来的y
|
方法2,逻辑运算(异或):
x^=y;
//x先存x和y两者的信息
y^=x;
//保持x不变,利用x异或反转y的原始值使其等于x的原始值
x^=y;
//保持y不变,利用x异或反转y的原始值使其等于y的原始值
|
关于异或运算要牢记两个原则:
任何一位二进制数同 1 异或都会变成另外一个(0 同 1 异或的结果是 1,1 同 1 异或的结果是 0)
任何一位二进制数同 0 异或都保持不变(0 同 0 异或的结果是 0,1 同 0 异或的结果是 1)
实现这个操作的方法很多。
最基本的方法就是使用一个临时变量,具体的代码如下:
int tmp;
tmp=a;
a=b;
b=tmp;
void swap1(
int& x,
int& y)
{ x=x+y; y=x-y; x=x-y; } |
void swap2(
int &x,
int &y)
{ x=x-y; y=x+y; x=y-x; } |
void swap3(
int& x,
int& y)
{ x ^= y; y ^= x; x ^= y; } |
x和y同号的情况下容易溢出 | x和y异号的情况下容易溢出 | |
所以更严谨的做法如下:
void swap4(
int &x,
int &y)
{ if(x==y) return ; if((x> 0&&y> 0)||(x< 0&&y< 0)) { x=x-y; y=x+y; x=y-x; } else{ x=x+y; y=x-y; x=x-y; } } |
void swap5(
int &x,
int &y)
{ if(x==y) return; x^=y; y^=x; x^=y; } |
【扩展】
另外,还有不使用临时变量交换N个整型数的操作,
| a | b | c | d | e |
+---+---+---+---+---+
| 1 | 2 | 3 | 4 | 5 |
+---+---+---+---+---+
| a | b | c | d | e |
+---+---+---+---+---+
| 2 | 3 | 4 | 5 | 1 |
+---+---+---+---+---+
|
然后可以把代码优化为:
|
继续优化,把三句压缩为一句,如下:
|
还可再优化,如下:
|
现在来顺次交换5个变量的值,如下:
|
既然有返回值,那么可以写成链式的,如下:
|
现在,让我们来把swap函数依次用相应的函数体替换掉,如下:
|