我所在的团队

目前我所在的团队主导员工更加注重市场与业务,这样的价值观引导员工轻视写代码的重要性,工作3-4年的员工代码编写能力与刚进公司相比提升有限。公司的设计人员与实现人员脱钩严重,将业务设计与编码实现原本是相辅相成的东西分隔开,再加上公司的价值导向,导致员工愈加地向业务倾斜轻视编码。公司员工流动率大(这个原因是多方面的),每年会招聘大量的新员工。一般工作3-4年的员工会主推管理或是业务设计基本上不编码,管理的正是源源不断刚进来的新员工。应届的新员来至不同的专业(如物理,光电,通信),很少有学计算机或软件科班出身的人员。作为新员工的前两年会主攻编码。这前一到两年打基础的时间段,中间又可能会被支援测试或是转到维护,同时又伴随着出差(国内/国外),再加上公司从上到下的注重市场的价值观导向,新员工是根本安不下心来打好基础,夯实编码能力。新员工到了第3-4年,或者走PL的管理路线,或者走SE的业务设计路线,由于没有打下很好的基础好多知识都有所欠缺导致管理问题多多,设计一塌糊涂(很多3-4年的员工连UML图都画不明白,就敢来做系统设计)。系统绝大部分代码实现是靠1-2年的新员工完成,导致编写的模块引发很多的问题单以及潜在隐患。问题单一多导致加班加点的去修改,潜在隐患最要命,因为它总是导致很难定位随机性的bug。
### 回答1: 从描述中看,这位面试者在全国大学生数学建模竞赛中使用了决策树分类算法和LDA进行数据处理和分析,以探究玻璃的分类规律,并且所在团队获得了上海市一等奖。 就技术方法而言,使用决策树分类算法和LDA对玻璃文物数据进行处理和分析是常见的数据分析技术,这些技术也被广泛应用于实际问题中。 但是,不能确定使用的方法是否正确或有效,因为对于数据的处理和分析,最终结果的质量取决于很多因素,如数据的质量和数量、方法的合理性和正确性、模型的选择等等。 另外,描述中未提及所使用的方法是否存在局限性或缺陷,以及是否存在可能的偏差或误差。 综上所述,无法确定该面试者使用的方法是否有问题,需要更多的详细信息和上下文才能做出更具体的判断。 ### 回答2: 从面试者的描述中,她在全国大学生数学建模竞赛中使用了决策树分类算法和LDA对玻璃文物相关的数据进行处理和分析,并获得了一等奖。但从该描述中并没有明确提及她使用这些方法处理数据时所遇到的问题,因此无法确定她使用的方法是否存在问题。 然而,需要注意的是,根据题目中的信息,我们无法完全了解她对决策树分类算法和LDA方法的理解和运用。在使用这些算法时,面试者可能会面临以下潜在的问题: 1. 数据准备:她可能需要充分了解玻璃文物相关的数据,包括数据质量、数据重复项、缺失值等,并进行适当的数据清洗和处理。 2. 特征选择:她需要选择合适的特征来训练模型,以便准确地分类玻璃文物。特征选择是一个关键的步骤,可能需要考虑领域知识和特征工程技巧。 3. 模型选择和参数调整:她使用的决策树分类算法和LDA方法都有不同的参数和模型选择,面试者需要在比较不同模型和参数的性能之后,选择适合当前问题的最佳模型,并进行相应的参数调整。 4. 样本不平衡问题:面试者在分析未知类别玻璃样本时,可能会遇到样本不平衡的问题。需要采取相应的处理方法,如过采样或欠采样等,以保证模型对未知类别样本的预测效果。 5. 模型评估:面试者需要对她所构建的分类模型进行评估,以确保模型的准确性和稳定性。 总之,面试者在描述中未提及她使用这些方法时所遇到的具体问题,因此无法确定她使用的方法是否存在问题。然而,上述问题可能是在进行数据处理和分析时需要注意的一些方面。 ### 回答3: 从面试者所描述的竞赛经历看,她在全国大学生数学建模竞赛中对玻璃文物相关数据进行了处理与分析,并且使用了决策树分类算法和LDA(线性判别分析)对玻璃样本进行分类和预测。她所在的团队获得了上海市一等奖。 从描述中并没有明确提到使用的方法存在什么样的问题。然而,作为面试者,可以根据她所使用的方法提出一些可能存在的问题: 1. 决策树分类算法的选择:虽然决策树是一种简单且有效的分类算法,但在处理复杂数据时,可能会导致过拟合或者无法准确捕捉潜在的分类规律。面试者也没有提及是否对决策树算法进行参数调整或者如何验证模型的性能。 2. LDA的使用:LDA 是一种有监督的降维方法,它可以将高维数据映射到低维空间来寻找更好的分类边界。然而,LDA 在数据不满足其假设的情况下可能会导致分类结果较差。面试者没有提及在使用LDA时是否考虑了这些限制,以及是否对LDA进行了适当的验证和评估。 3. 数据采样与预处理:面试者没有具体提到对数据进行何种采样策略以及是否在数据预处理过程中进行了去噪、归一化等步骤。这些步骤在处理数据时都是重要且常用的,能够帮助提高模型的准确性和鲁棒性。 综上所述,尽管面试者描述的竞赛经历是相对完整的,但从她的描述中不难发现她所使用的方法可能存在一些问题,面试官可以根据这些问题进一步深入探讨和评估面试者的理解和能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值