OJ题目:click here~~
题目分析:三根柱子 , n个圆盘 。给一个汉诺塔的状态,求将所有盘挪到一个柱子上的最少步数,并给出是最后在哪个柱子上。
从给定状态到目标状态很复杂,但是从目标状态到给定的状态就很容易想了。将一个柱子上i个盘,挪到另一个柱子上,需要pow(2,i) - 1步。 显然,最后在的那个柱子,一定是所给状态下最大盘所在的柱子。接下来考虑第二大的盘,需要移动就移动。……详见代码注释。
AC_CODE
const int mod = 1000000;
int p[100002] , s[100002];
int main(){
int n , i , j , k ,a , x[4] ;
s[0] = 1;
for(i = 1;i <= 100000;i++)
s[i] = 2*s[i - 1] , s[i] %= mod;
while(cin >> n){
scanf("%d%d%d",&x[1],&x[2],&x[3]);
for(i = 1;i <= 3;i++)
for(j = 0;j < x[i];j++){//记录所给状态每个盘在哪个柱子
scanf("%d",&a);
p[a] = i;
}
int now = p[n];
int need = p[n - 1];
int ans = 0;
for(i = n - 1;i > 0;i-- , need = p[i]){
if(need != now){//此刻的状态与需要的状态不一样,则需要移动
ans += s[i - 1];//ans += (s[i - 1] - 1 + 1)
ans %= mod;
now = 6 - need - now;//盘i以上的所0有盘,先要挪到除这两个以外的第三个柱子上。
}
}
cout << p[n] << endl << ans << endl;//最后所在的柱子,一定是最大盘在的柱子
}
return 0 ;
}