ural 1109. Conference 匈牙利算法

题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1109


题意描述:两组各有M与N名成员,它们分别于对方组的人有预约,现在要为他们之间架设线路,使得每个人都能与对方至少一个有预约的人交流,求最少线路的数量;

简单说来就是一个与最大匹配有关的问题,仿写一遍标准匈牙利算法得到最大匹配项ans,然后总人数减去ans得到输出答案;


AC代码:

//#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <string>
#include <stack>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <map>
#include <iomanip>
using namespace std;

vector<int>visit;
vector<int>link;
vector<vector<bool> >table;
int m, n, k;


bool find(int idx,int depth){
	for (int i = 0; i < n;i++)
	if (table[idx][i] && visit[i] != depth){
		visit[i] = depth;
		if (link[i] == -1 || find(link[i], depth)){
			link[i] = idx;
			return true;
		}
	}
	return false;
}


void func(){
	cin >> m >> n >> k;
	table.resize(m, vector<bool>(n, false));
	link.resize(n, -1);
	visit.resize(n, -1);

	while (k--){
		int src, tar;
		cin >> src >> tar;
		src--; tar--;
		table[src][tar] = true;
	}

	int ans = 0;
	for (int i = 0; i < m; i++){
		if (find(i, i))ans++;
	}

	cout << m + n - ans << endl;
}

int main(){

	//freopen("out.txt", "w", stdout);
	//freopen("in.txt", "r", stdin);

	func();

}

注:这道题在学匈牙利算法之前有试过另一种方法,可能对很多新人或者数学较差的人来说是个误区: 在每个连通分量里面,需要的最少线路是min(num(A),num(B)),所以只要用累加每个连通分量算出来的值就能过了;

(以上结论经证实为假命题,例如测试用例为:

3 4 6

1 1

1 2

1 3

1 4

2 4

3 4

时,答案错误,画图可知;)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值