- 博客(18)
- 收藏
- 关注
原创 AI与敏捷开发管理系列5:AI敏捷项目管理的实施路线图
本文提出了"AI+敏捷"落地的三阶段实施路线图:1)试点阶段聚焦1-2个易落地场景(如用户故事生成),验证价值并建立基线指标;2)扩展阶段搭建AI敏捷平台,整合NLP等能力并与现有工具链打通;3)全流程部署阶段覆盖需求-开发-测试-部署全生命周期,构建持续优化的反馈闭环。实施前需做好组织支持、文化宣贯和技术能力准备。文章指出,AI与敏捷的融合能提升项目成功率、团队效率和个人能力,是持续演进的过程,需要多方共同努力来实现业务与技术的双重成功。
2025-10-06 13:03:50
883
原创 AI与敏捷开发管理系列4:双向赋能——AI技术如何优化敏捷实践
本文探讨了AI技术如何优化敏捷开发实践,通过腾讯会议AI小助手、Jira AI功能和Git系统质量预警三个案例,展示了AI在站会自动化、用户故事生成和代码质量管控中的实际应用。这些AI工具能减少人工操作时间40%-70%,提升缺陷检出率至85%,降低误报率至5%以下,显著提升敏捷开发的效率和质量。文章还总结了8个AI增强敏捷的核心场景,覆盖从需求分析到交付运维的全流程,指出AI通过自动化重复工作和精准预测决策,实现与敏捷方法论的双向赋能。最后强调需谨慎选择工具、完善数据基础并渐进式实施,才能真正发挥AI价值
2025-10-05 11:21:26
844
原创 AI与敏捷开发管理系列3:敏捷方法在AI项目中的应用案例
本文通过三个AI项目案例展示了敏捷方法论的成功应用。在社区医院智能预约助手项目中,敏捷方法帮助将预约时间缩短至45秒,误诊率降低70%;在线教育推荐系统通过A/B测试和动态优化,使课程完成率达78%;智能超市库存系统则通过渐进式部署实现缺货率降至4.2%。三个案例共同体现了敏捷开发的核心优势:跨职能协作、迭代改进和数据驱动决策,有效解决了AI项目中的需求模糊、数据敏感等技术挑战。实践证明,敏捷方法论能显著提升AI项目的成功率与业务价值。
2025-09-28 23:19:28
976
原创 AI与敏捷开发管理系列2:跨越鸿沟——AI项目周期与敏捷方法论的融合
本文探讨了如何将敏捷方法论应用于AI项目全生命周期,针对六个关键阶段提出针对性解决方案。在需求界定阶段,通过用户故事映射和跨职能协作弥合业务与技术鸿沟;数据获取阶段采用自动化管道和持续验证应对数据洪流;数据分析阶段运用时间盒探索法和假设看板优化特征工程;模型构建阶段实施迭代冲刺和自动化调参;效果评估阶段建立多维度指标体系;部署阶段采用渐进式发布和DevOps实践。文章强调通过建立跨职能团队、迭代开发、自动化流程和持续监控,实现AI项目敏捷化转型,有效应对项目不确定性和复杂性挑战。
2025-09-28 17:51:58
830
原创 AI与敏捷开发管理1:传统方法失灵?人工智能项目的新法则
本文探讨了AI项目与敏捷开发管理的结合。随着AI技术发展,传统项目管理方法面临需求不确定、数据依赖等技术挑战。文章回顾了敏捷开发的核心原则和演进历程,指出AI项目天然具备迭代、快速响应等敏捷基因。同时分析了AI项目与软件敏捷的关键差异,强调AI项目需关注数据质量、模型验证等独特维度。作者提出AI项目需遵循单点任务、数据优先、迭代改进的新法则,为后续探讨敏捷在AI各阶段的具体应用奠定基础。
2025-09-28 00:15:01
720
原创 9. 模型部署与预测:从实验室到生产环境
本文介绍了猫狗识别模型的多种部署方案,包括单张图像预测、批量预测、WebAPI部署(Flask/FastAPI)和移动端部署(TensorFlowLite)。针对每种方案提供了核心代码实现,并比较了不同部署方式的适用场景和开发复杂度。文章还给出了生产环境部署建议,包括模型压缩、性能优化、Docker容器化等实用技巧,最后总结了模型部署的关键要点和系列教程的完整学习路径。
2025-08-23 10:12:55
739
原创 8. 模型评估技术:全面分析深度学习模型性能
本文系统介绍了深度学习模型评估的关键技术与流程。首先阐述了测试集评估的核心目标与步骤,强调使用独立测试集评估模型泛化能力。然后详细讲解了混淆矩阵分析、ROC曲线与AUC计算等核心评估方法,包括可视化实现和指标解读。文章还提供了完整评估流程示例代码,涵盖高级技术如交叉验证、学习曲线分析等。最后针对常见问题给出解答,并强调根据数据特点选择适当评估指标的重要性。全文为深度学习模型评估提供了全面的技术指导和实践参考。
2025-08-23 10:08:33
661
原创 7. 模型保存与加载:从训练到部署的关键技术
模型保存与加载是深度学习项目中的重要环节,它决定了训练好的模型如何被存储、共享和部署。本文将深入探讨不同的保存格式、加载方法,以及跨平台部署的最佳实践。
2025-08-22 18:08:04
974
原创 6. 模型训练循环:深入理解深度学习训练过程
本文深入解析深度学习模型训练的核心方法model.fit(),涵盖批次与周期概念、训练/验证数据流管理及优化策略。文章详细介绍了该方法的基本用法、关键参数和工作流程,包括数据初始化、训练循环和验证评估等环节。同时提供了批次大小选择策略、数据供给方式对比、验证集管理技巧等实用建议,并附有端到端训练代码示例。通过理解训练循环机制,读者可掌握优化训练过程、提高模型性能的关键技术,为后续模型部署应用奠定基础。
2025-08-21 19:47:57
1010
原创 5. 回调函数配置:自动化训练过程的关键工具
本文深入探讨了Keras中的回调函数(Callbacks)及其应用。回调函数是在训练过程中自动执行的工具,可用于监控训练进度、保存模型、调整参数等。重点介绍了四种核心回调函数:EarlyStopping(防止过拟合)、ModelCheckpoint(保存最佳模型)、ReduceLROnPlateau(动态调整学习率)和TensorBoard(训练可视化)。文章详细说明了每种回调的配置参数、适用场景和实现原理,并提供了整合使用的代码示例。此外,还涵盖了自定义回调函数、学习率调度器等高级用法,以及常见问题解答。
2025-08-18 21:16:23
1105
原创 4. 模型编译与配置详解:优化器、损失函数与评估指标的选择
本文系统介绍了深度学习模型编译的关键组件,包括损失函数、优化器和评估指标的配置与选择。重点分析了二元交叉熵、Huber损失等常见损失函数的数学原理和适用场景,对比了Adam、SGD等优化器的特点与参数设置,并详细讲解了精确率、召回率等评估指标的计算方法。文章还提供了高级配置技巧,如Focal Loss处理类别不平衡问题,以及自定义混合指标的实现方法。通过代码示例和公式推导,为模型编译提供了全面的技术指导。
2025-08-10 21:52:32
882
原创 3. 模型定义与初始化:构建高效卷积神经网络的艺术
本文详细介绍了使用Keras构建猫狗识别CNN模型的设计与实现。模型采用4个卷积块进行层次化特征提取(32→64→128→256个滤波器),配合BatchNorm、Dropout等正则化技术。输入尺寸为224×224,输出层使用sigmoid激活函数进行二分类。文章深入解析了各层功能(Conv2D、MaxPooling2D等),并提供了模型编译配置建议(Adam优化器、学习率衰减等)。此外还介绍了预训练模型微调、轻量级架构等备选方案,以及参数初始化、混合精度训练等最佳实践。该架构在特征提取能力与计算效率间取
2025-08-09 20:07:50
746
原创 2. 数据预处理与增强:深度学习模型成功的关键第一步
本文详细介绍了使用Keras ImageDataGenerator进行猫狗识别数据预处理和增强的方法。重点包括:数据标准化的必要性(像素值0-1归一化)、通过旋转/平移/翻转等变换增强数据多样性、目录结构规范(自动生成类别标签)、训练/验证集差异化处理(仅训练集增强)以及可视化验证增强效果。文章还提供了参数调优建议(如水平翻转特别有效)、性能优化技巧(多线程处理)和常见问题解答,强调数据增强对提升模型泛化能力和防止过拟合的关键作用。这些预处理步骤为后续模型训练奠定了质量基础。
2025-08-09 09:55:13
959
原创 1. Keras深度学习框架:AI模型开发的强大工具
Keras作为TensorFlow的高级API,为深度学习提供了简洁易用的接口。本文介绍了Keras的核心特性:用户友好的API设计、模块化组件、跨平台兼容性和生产就绪功能。重点展示了如何通过Keras构建猫狗识别模型的学习路线图,包括数据预处理、模型定义与训练、评估及部署全流程。Keras凭借平缓的学习曲线、强大的生态系统和灵活性,成为从研究到生产的理想选择。后续文章将深入讲解数据预处理等具体实现细节。
2025-08-08 20:40:11
650
原创 [特殊字符] 9篇文章带你从零学会AI识别猫狗!完整学习路线图
摘要: 本系列9篇文章系统讲解Keras深度学习全流程,从框架介绍到模型部署。内容涵盖:Keras基础、CNN原理、数据预处理、模型训练与优化、评估与部署等核心知识,结合猫狗识别项目实践。学习路径循序渐进,强调理论+实践,建议按顺序学习并动手实验。完成系列后,可掌握独立开发AI项目的能力,并了解进阶方向(如ResNet、迁移学习)。适合新手入门,需保持持续实践与探索精神。#AI入门 #深度学习实战
2025-08-08 20:37:29
470
1
原创 用AI开发AI项目:一个学生团队的音乐可视化创新实践
本文介绍了一个AI音乐绘画交互平台的开发过程,该项目旨在通过多模态AI技术将音乐情感转化为视觉表达,特别针对有沟通障碍的儿童。文章详细阐述了技术架构设计、模型选型、开发挑战及解决方案,包括API兼容性问题和参数匹配等问题的处理。项目成功集成了3个AI模型,实现了音乐到图像的多模态转换,验证了AI能准确理解音乐情感并影响视觉输出。开发过程中创新性地使用了AI编程助手CursorAI,体现了"用AI开发AI"的理念。项目不仅提升了团队的技术能力,更展现了技术创新的社会价值。文章最后展望了项目
2025-07-22 20:09:19
1198
原创 今天学/想到啥 - 对“脑补”的新感悟
人们常常基于有限的信息,自行构建出一套符合自己预期或偏见的解释体系,从而得出错误的结论或做出不恰当的决策。
2025-01-14 20:32:17
189
原创 ORSC 与中国传统智慧:共筑成长之路 ORSC and Chinese Traditional Wisdom: Building a Growth Path Together
组织与关系系统教练 Organization and Relationship System Coaching与儒家的理念 - “格物致知,诚意正心,修身齐家,治国平天下“
2024-12-24 20:45:38
638
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅