整数划分问题经典解法(有用)

经典的dp!
有N多情况的整数划分,下面就几种这几天学习的分别说一下:
1. 数n的划分中,其最大值不能大于k:记其结果为f(n, k),那么,
状态转移方程:当 n == 1 || k == 1 时,f(n, k) == 1, n为1,那么只能为1; 而k为1,那么只能划分成n个1. 当 n < k 时,f(n, k) == f(n, n),因为n的划分中不可能出现比n大的数,所以可以将最大值从k降到n; 当 n >= k 时,f(n, k) = f(n-k, k) + f(n, k-1), 前半部分是划分中存在最大值k,所以可以在(n-k)中继续以最大值为k来划分,而后半部分则是划分中最大值不是k,那么其结果和以(k-1)为最大值的划分是一样的。在初始化中可以将f(0, k)初始化为1,及对应f(n, n)可能出现的 情况,这样那么最后的程序为:
void dp() {
      for(int i = 1; i <= 120; i++) {
            a[i][1] = a[1][i] = a[0][i] = 1;
      }
      for(int i = 2; i <= 120; i++) {
            for(int j = 2; j <= 120; j++) {
                  if(i < j) a[i][j] = a[i][i];
                  else a[i][j] = a[i-j][j] + a[i][j-1];
            }
      }
}
!!如果这种情况下求取a[n][k],而 k >= n ,其结果就是n的所有划分之和。

2. 将n划分成k个正整数之和的划分数:当 n < k 时,显然是不可能的,那么f(n, k) == 0; 当 k == 1 时,f(n, k) == 1; 当 n >= k 时,f(n, k) = f(n-k, k) + f(n-1, k-1),前半部分对应这k个数中不存在1的情况,那么我们就可以将划分中每个数都减去1,剩下的输仍然是大于0的,等价于将n减去了k,而后半部分这是对应这k个数中存在1的情况,最终程序可以如下:
void dp() {
      memset(a, 0, sizeof(a));
      for(int i = 1; i <= 40000; i++) {
            for(int j = 1; j <= 100; j++){
                  if(j == 1) a[i][j] = 1;
                  else a[i][j] = a[i-1][j-1] + a[i-j][j];
                  if(a[i][j] > mm) a[i][j] -= mm;
            }
      }
}
!!如果要求可以小于k,那么就可以将结果从1一直加到k。

3. 将n划分成若干个奇正整数之和的划分数:f(n, k) 表示n的划分中最大值为k的划分数。当 k == 1 时,其结果只能为n个1,当 k 是偶数时,有f(n, k) == f(n, k-1);当 k > n 时,有f(n, k) == f(n, n),理由同1;当 n >= k 时,有 f(n, k) = f(n, k-1) + f(n-k, k) <此式中k为奇数,偶数可以对应前面的情况>,前半部分对应n的划分数中最大值不为k,那么可以从k-2开始,式中 k-1 的效果也能达到,同时还能在递推中防止出现下标为负的情况;最终的程序可以如下:
void dp() {
      memset(a, 0, sizeof(a));
      for(int i = 0; i <= 100; i++){
            a[i][1] = 1;
            if(i & 1) a[0][i] = 1; // 此式对应a[n][n], n为奇数的情况
      }
      for(int i = 1; i <= 100; i++) {
            for(int j = 1; j <= 100; j++) {
                  if(j & 1) {
                        if(i >= j) a[i][j] = a[i-j][j] + a[i][j-1];
                        else a[i][j] = a[i][i];
                  } else {
                        a[i][j] = a[i][j-1];
                  }
            }
      }
}
4. 将n划分成若干不同整数之和的划分数:f(n, k) 表示n的划分中最大值为k的划分数。当 k == 1 时,f(n, k) = 1;当 n < k 时;f(n, k) == f(n, n),理由同1;当 n >= k 时,有 f(n, k) == f(n-k, k-1) + f(n, k-1),前半部分对应的是划分中存在k,而后一种情况对应n的划分中不存在k,这两种情况下都将递归条件从k换成 k-1 是因为当前的两种情况已经将k的所有情形都已考虑,而划分中k不能重复。所以最终的程序可以为:
void dp() {
      memset(a, 0, sizeof(a));
      a[0][0] = 1;
      for(int i = 0; i <= 100; i++) {
            for(int j = 1; j <= 100; j++) {
                  if(i >= j) a[i][j] = a[i-j][j-1] + a[i][j-1];
                  else a[i][j] = a[i][i];
            }
      }
}

!!小结:这里只是几种典型的整数划分情形,对这几种整数划分,找出动态规划的状态转移方程很关键,但各种情况下的初始化条件也很important,不然就一直 wa wa wa 。。。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
整数划分是一个经典的数学问题,可以用递归的方式进行求解。具体思路如下: 1. 首先确定递归的边界条件,即当划分的整数为1时,只有一种划分方式。 2. 对于大于1的整数,可以分成两种情况:一种是包含1的划分方式,一种是不包含1的划分方式。 3. 对于包含1的划分方式,可以递归求解剩余的部分。 4. 对于不包含1的划分方式,可以递归求解剩余部分,但是需要限制划分的整数不能大于原来的整数。 下面是一个简单的整数划分的C语言代码实现: ```c #include <stdio.h> int integerPartition(int n, int m) { if (n == 1 || m == 1) { return 1; } else if (n < m) { return integerPartition(n, n); } else if (n == m) { return 1 + integerPartition(n, m - 1); } else { return integerPartition(n, m - 1) + integerPartition(n - m, m); } } int main() { int n; printf("请输入一个正整数n:"); scanf("%d", &n); printf("整数划分的个数为:%d\n", integerPartition(n, n)); return 0; } ``` 在上面的代码中,`integerPartition`函数接受两个参数n和m,表示将n划分成不大于m的正整数的划分方式数。函数根据递归边界条件和上述思路进行递归求解,并返回划分方式数。主函数中从输入中读取n,调用`integerPartition`函数计算划分方式数,并输出结果。 需要注意的是,整数划分问题解法存在重复计算的情况,可以采用动态规划的方式优化求解效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值