数据结构之查找

数据结构之查找

散列查找

首先我们来考虑一下散列表,散列表最核心的思想就是计算要查找的内存位置,看清楚,是位置,也就是说我们可以在O(1)的时间内找到我们需要的东西。这相对于普通查找来说,从O(N)到O(1),是多么大的一个提升,原理我就不讲了,直接看实现,这里采用开放定址法来实现散列查找。

#include<stdio.h>
#include<stdlib.h>

#define SUCCESS 1
#define UNSUCCESS 0
#define HASHSIZE 12
#define NULLKEY -32768

typedef struct{
    int *elem;
    int count;
}HashTable;
int m = 0;

int InitHashTable(HashTable *H)
{
    int i;
    m = HASHSIZE;
    H->count = m;
    H->elem=(int *)malloc(m*sizeof(int));
    for(i=0;i<m;i++)
        H->elem[i]= NULLKEY;
    return 1;
}

int Hash(int key)
{
    return key%m;
}
void InsertHash(HashTable *H,int key)
{
    int addr = Hash(key);
    while(H->elem[addr] != NULLKEY)
        addr = (addr+1) % m;
    H->elem[addr] = key;
}

int SearchHash(HashTable H,int key,int *addr)
{
    *addr = Hash(key);
    while(H.elem[*addr]!=key)
    {
        *addr = (*addr+1) % m;
        if(H.elem[*addr]==NULLKEY || *addr==Hash(key))
            return 0;
    }
    return 1;
}

int main()
{
    int A[]={12,67,56,16,25,37,22,39,15,47,48,34};
    int i=0,key=39, result,addr;

    HashTable H;
    InitHashTable(&H);
    for(i=0;i<12;i++)
        InsertHash(&H,A[i]);

    result = SearchHash(H,key,&addr);

    for(i=0;i<12;i++)
    {
        SearchHash(H,A[i],&addr);
        printf("%d %d\n",A[i],addr);
    }



    return 0;
} 

二叉查找树

#include<stdio.h>
#include<stdlib.h>
#include<stack>
#include<queue>
using namespace std;
typedef struct TreeNode *Tree;
struct TreeNode{
    int v;
    Tree Left,Right;
};

Tree NewNode(int V)
{
    Tree T = (Tree)malloc(sizeof(struct TreeNode));
    T->v = V;
    T->Left = T->Right = NULL;
    return T;
}
Tree Insert(Tree T,int V)
{
    if(!T)
        T = NewNode(V);
    else{
        if(V>T->v)
            T->Right = Insert(T->Right,V);
        else
            T->Left = Insert(T->Left,V);
    }
    return T;
}
Tree MakeTree(int N)
{
    Tree T;
    int i,V;
    scanf("%d",&V);
    T = NewNode(V);
    for(i=1;i<N;i++){
        scanf("%d",&V);
        T = Insert(T,V);
    }
    return T;
}
//递归遍历 
void preOrder(Tree T)
{
    if(!T)
        return ;

    preOrder(T->Left);
    preOrder(T->Right);
    printf("%d",T->v);

}

//层次遍历 
void LevelOrder(Tree T)
{
    Tree t;
    if(!T)
        return ;
    queue<Tree> q;
    q.push(T);
    while(!q.empty()){
        t = q.front();
        q.pop();
        printf("%d",t->v);
        if(t->Left)
            q.push(t->Left);
        if(t->Right)
            q.push(t->Right);
    }
}

//非递归遍历 前序 
void PreRecusion(Tree T)
{
    Tree t = T;
    stack<Tree> s;
    while(t || !s.empty()){
        while(t){
            printf("%d",t->v);
            s.push(t);
            t = t->Left;
        }
        if(!s.empty()){
            t = s.top();
            s.pop();
            t = t->Right;
        }
    }
}

//非递归遍历 中序 
void InRecusion(Tree T)
{
    stack<Tree> s;
    Tree t = T;
    while(t || !s.empty()){
        while(t){
            s.push(t);
            t = t->Left;
        }
        if(!s.empty()){
            t = s.top();
            printf("%d",t->v);
            s.pop();
            t = t->Right;
        }
    }
}

int main()
{
    Tree T;

    T = MakeTree(5);

    preOrder(T);


    return 0;
}

这段代码是关于二叉搜素树的部分,其中还包含了递归,非递归的遍历方式,非常值得一读。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值