POJ 2391-Ombrophobic Bovines(网络流_最大流+floyd+二分)

Ombrophobic Bovines
 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15485 Accepted: 3361

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

PS：因为一个dp初始化的问题 wa了一晚上，sad

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <queue>
#include <map>

using namespace std;

const long long maxxint=1e16;
const int inf=0x3f3f3f3f;
int head[100010],num[1010],d[1010],cur[1010],pre[10010],q[1010];
long long dp[1010][1010],n,sum,cnt,s,t,nv;
int maxint=inf;
struct node {
int u,v,cap;
int next;
} edge[10000010];
struct filed {
int x,y;
} p[1010];
void add(int u, int v, int cap)
{
edge[cnt].v=v;
edge[cnt].cap=cap;
edge[cnt].next=head[u];
head[u]=cnt++;

edge[cnt].v=u;
edge[cnt].cap=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
void floyd()
{
int i, j, k;
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]);
}
void bfs()
{
memset(num,0,sizeof(num));
memset(d,-1,sizeof(d));
int f1=0,f2=0,i;
q[f1++]=t;
num[0]=1;
d[t]=0;
while(f1>=f2) {
int u=q[f2++];
for(i=head[u]; i!=-1; i=edge[i].next) {
int v=edge[i].v;
if(d[v]!=-1) continue;
d[v]=d[u]+1;
num[d[v]]++;
q[f1++]=v;
}
}
}
int isap()
{
memcpy(cur,head,sizeof(cur));
int flow=0,u=pre[s]=s,i;
bfs();
while(d[s]<nv) {
if(u==t) {
int f=maxint, pos;
for(i=s; i!=t; i=edge[cur[i]].v) {
if(f>edge[cur[i]].cap) {
f=edge[cur[i]].cap;
pos=i;
}
}
for(i=s; i!=t; i=edge[cur[i]].v) {
edge[cur[i]].cap-=f;
edge[cur[i]^1].cap+=f;
}
flow+=f;
if(flow>=sum)
return flow;
u=pos;
}
for(i=cur[u]; i!=-1; i=edge[i].next) {
if(d[edge[i].v]+1==d[u]&&edge[i].cap)
break;
}
if(i!=-1) {
cur[u]=i;
pre[edge[i].v]=u;
u=edge[i].v;
} else {
if((--num[d[u]])==0) break;
int mind=nv;
for(i=head[u]; i!=-1; i=edge[i].next) {
if(mind>d[edge[i].v]&&edge[i].cap) {
mind=d[edge[i].v];
cur[u]=i;
}
}
d[u]=mind+1;
num[d[u]]++;
u=pre[u];
}
}
return flow;
}
int main()
{
long long m,i,j;
long long a,b,c;
scanf("%lld %lld",&n,&m);
sum=0;
for(i=0; i<=n; i++)
for(j=0; j<=n; j++) {
if(i==j)
dp[i][j]=0;
else
dp[i][j]=maxxint;//因为这个地方初始化的是inf 导致wa了一晚上，应该初始化为maxxint，因为在下面二分的时候的上界是2^11
}
for(i=1; i<=n; i++) {
scanf("%d %d",&p[i].x,&p[i].y);
sum+=p[i].x;
}
while(m--) {
scanf("%lld %lld %lld",&a,&b,&c);
if(dp[a][b]>c) {
dp[a][b]=dp[b][a]=c;
}
}
floyd();
int x;
long long low=1,high=2000000000000,mid,ans=-1;
while(low<=high) {
mid=(high+low)/2;
cnt=0;
s=0;
t=2*n+1;
nv=t+1;
memset(head,-1,sizeof(head));
for(i=1; i<=n; i++) {
add(s,i,p[i].x);
add(i+n,t,p[i].y);
}
for(i=1; i<=n; i++)
for(j=1; j<=n; j++) {
if(dp[i][j]<=mid)
add(i,j+n,inf);
}
x=isap();
if(x>=sum) {
ans=mid;
high=mid-1;
} else
low=mid+1;
}
printf("%lld\n",ans);
return 0;
}

©️2019 CSDN 皮肤主题: 酷酷鲨 设计师: CSDN官方博客