超级楼梯
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 29808 Accepted Submission(s): 15413
2 2 3
1 2
解题思路:与一只小蜜蜂类似。
先模拟一下走法:当从第1级走到第2级的时候,只有一种走法。
当从第1级走到第3级的时候,有11 , 2两种走法。(先上一级再上一级,或直接跨两级)
当从第1级走到第4级的时候,有111,12,21,三种走法。
当从第1级走到第5级的时候,有1111,112,121,211,22五种走法。
要想走到第5级,必须先走到第3级或者第4级。
由此可得递推关系,设走法的数量为f(n), f(n)=f(n-1)+f(n-2)。
同样为斐波那契数列。
#include<stdio.h>
__int64 a[50]={0,1,1,2};
void f()
{
int i;
for(i=4;i<50;i++)
a[i]=a[i-1]+a[i-2];
}
int main()
{
f();
int n,m;
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
printf("%I64d\n",a[m]);
}
return 0;
}