南阳oj 整数性质

定义:设a,b是任意的两个整数,其中b不等于0,如果存在一个整数q是的等式
a=bq成立就称为b整除a,计做b|a


定理1:设a,b。c不等于0,若c|a,c|b,则对任意的整数s,t,有c|(sa+tb)
证明:因为c|a  c|b
所以a=cq1   b=cq2所以sa+tb=scq1+scq2所以sa+tb=c(sq1+tq2)=cq
所以c|(sa+tb)


定理2:设a,b,c是三个不全为零的整数,如果a=bq+c,其中q是整数,则(a,b)=(b,c)即a,b的
最大公因数等于b,c的最大公因数
证明:设a,b,的最大公因数是d   b和c的最大公因数为e
所以d|a   d|b 所以由定理1得d|(a-bq)=c即d|c又因为e为b和c的最大公因数所以d|e(这个先不证明)
同理可得e|d  因为d|e且e|d所以d=e所以(a,b)=(b,c)


基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。


证明:设 a>b。


  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;


  2,ab!=0 时


  设 ax1+by1=gcd(a,b);


  bx2+(a mod b)y2=gcd(b,a mod b);


  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);


  则:ax1+by1=bx2+(a mod b)y2;


  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;


  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;


     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.


   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
 
#include<stdio.h>
int x,y,q;
void extend_Eulid(int a,int b)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        q = a;
    }
    else
    {
        extend_Eulid(b,a%b);
        int temp = x;
        x = y;
        y = temp - a/b*y;
    }
}
int main()
{
    int a,b;
    while(scanf("%d%d",&a,&b)!=EOF)
    {
        extend_Eulid(a,b);
        printf("%d %d\n",x,y);
    }
    return 0;
}        
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值