ural1009 数位dp

1009. K-based Numbers

Time limit: 0.5 second
Memory limit: 64 MB
Let’s consider  K-based numbers, containing exactly  N digits. We define a number to be valid if its K-based notation doesn’t contain two successive zeros. For example:
  • 1010230 is a valid 7-digit number;
  • 1000198 is not a valid number;
  • 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers  N and  K, you are to calculate an amount of valid  K based numbers, containing  Ndigits.
You may assume that 2 ≤  K ≤ 10;  N ≥ 2;  N +  K ≤ 18.

Input

The numbers  N and  K in decimal notation separated by the line break.

Output

The result in decimal notation.

Sample

input output
2
10
90


import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.StringTokenizer;

public class Main {

	public static void main(String[] args) {
		new Task().solve();
	}
}

class Task {
	InputReader in = new InputReader(System.in);
	PrintWriter out = new PrintWriter(System.out);
	
	long[][][] dp = new long[19][2][11] ;
	int[] bit ;
	long dfs(int pos , int pre , int k){
        if(pos == -1){
        	return 1 ;
        }
        if(dp[pos][pre][k] != -1){
        	return dp[pos][pre][k] ;
        }
		long sum = 0 ;
		for(int i = 0 ; i < k ; i++){
			if(pre == 0 && i == 0){
				continue ;
			}
			sum += dfs(pos-1 , i == 0 ? 0 : 1 , k) ;
		}
		return dp[pos][pre][k] = sum ;
	}

	void solve() {
		for(int i = 0 ; i < 19 ; i++){
			for(int j = 0 ; j < 2 ; j++){
				Arrays.fill(dp[i][j] , -1) ;
			}
		}
		while(in.hasNext()){
			int n = in.nextInt() ;
			int k = in.nextInt() ;
		    out.println(dfs(n-1 , 0 , k))  ;
		    out.flush() ;
		}		
		out.flush();
	}
	
}

class InputReader {
	public BufferedReader reader;
	public StringTokenizer tokenizer;

	public InputReader(InputStream stream) {
 		reader = new BufferedReader(new InputStreamReader(stream), 32768);
		tokenizer = new StringTokenizer("");
	}

	private void eat(String s) {
		tokenizer = new StringTokenizer(s);
	}

	public String nextLine() {
		try {
			return reader.readLine();
		} catch (Exception e) {
			return null;
		}
	}

	public boolean hasNext() {
		while (!tokenizer.hasMoreTokens()) {
			String s = nextLine();
			if (s == null)
				return false;
			eat(s);
		}
		return true;
	}

	public String next() {
		hasNext();
		return tokenizer.nextToken();
	}

	public int nextInt() {
		return Integer.parseInt(next());
	}
	
	public int[] nextInts(int n){
		int[] nums = new int[n] ;
		for(int i = 0 ; i < n ; i++){
			nums[i] = nextInt() ;
		}
		return nums ;
	}

	public long nextLong() {
		return Long.parseLong(next());
	}

	public double nextDouble() {
		return Double.parseDouble(next());
	}

	public BigInteger nextBigInteger() {
		return new BigInteger(next());
	}

}



内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值