计算机视觉
黑条纹的白斑马
这个作者很懒,什么都没留下…
展开
-
2021-07-27
transformer 结合yolov5目标检测实现 code原创 2021-07-27 10:30:53 · 225 阅读 · 0 评论 -
Yolo-v5从代码到服务部署实践
yolov5从代码到服务部署实践原创 2021-01-26 20:00:12 · 853 阅读 · 0 评论 -
pytorch-crnn实践以及内置ctc_loss使用小结
最近开始深入OCR这块, 以前倒是训练过开源的Keras-CRNN, 但是它和原文还是不一样, 今天参照Keras-CRNN代码和CRNN论文用pytorch实现CRNN, 由于没有GPU, 自己造了100多张只包含数字的小图片来训练模型, 验证模型能否收敛CRNN流程在这儿不再详细谈CRNN论文了, 主要按照原文做一个流程描述:输入图片要求高度为32, 使用VGG提取特征,高度32倍下采...原创 2020-05-01 17:07:24 · 5785 阅读 · 10 评论 -
YOLOv4: Optimal Speed and Accuracy of Object Detection论文解读
最近目标检测又出了yolo-v4,作为一个做目标检测的不可不膜拜膜拜。首先由于约瑟夫大神已经退出CV,yolo-v4 的一作是DarkNet的维护者,但还是加入了DarkNet官方。个人觉得这篇文章的对我的最大意义在于对现有的目标检测算法的结构以及各种训练trick作了对比,读完之后又加深了对该领域的一些理解。总之,论文结合各种最新trick来改进yolo-v3,效果还是很强的. 我的个人博客贡...原创 2020-04-29 12:26:50 · 818 阅读 · 0 评论 -
Anchor free 目标检测修炼之路: DenseBox : Unifying Landmark Localization with End to End Object Detection
Anchor free 目标检测修炼之路: DenseBox : Unifying Landmark Localization with End to End Object Detection原创 2020-03-28 19:01:22 · 314 阅读 · 0 评论 -
目标检测之RFB模块: Receptive Field Block Net for Accurate and Fast Object Detection
目标检测之RFB模块: Receptive Field Block Net for Accurate and Fast Object Detection原创 2020-03-28 19:00:33 · 1953 阅读 · 0 评论 -
Facenet: A Unified Embedding for Face Recognition and Clustering 总结
Facenet: A Unified Embedding for Face Recognition and Clustering总结原创 2020-03-28 18:59:38 · 216 阅读 · 0 评论 -
人脸检测网络: SSH: Single Stage Headless Face Detector总结
人脸检测网络: SSH: Single Stage Headless Face Detector总结原创 2020-03-28 18:58:09 · 406 阅读 · 0 评论 -
图像修复3: Free-Form Image Inpainting with Gated Convolution
图像修复3: Free-Form Image Inpainting with Gated Convolution总结原创 2020-03-28 18:56:52 · 1139 阅读 · 0 评论 -
图像修复2: Generative Image Inpainting with Contextual Attention总结与应用
Generative Image Inpainting with Contextual Attention总结与应用原创 2020-03-28 18:55:59 · 750 阅读 · 0 评论 -
图像修复1: Image Inpainting for Irregular Holes Using Partial Convolutions
Image Inpainting for Irregular Holes Using Partial Convolutions论文总结原创 2020-03-28 18:54:57 · 590 阅读 · 0 评论 -
Anchor free目标检测修炼之路:fcos -Fully Convolutional One-Stage Object Detection
我个人的关于fcos论文阅读理解, 如有错误欢迎指正原创 2020-03-28 18:53:43 · 315 阅读 · 0 评论 -
目标检测:nms与softnms
nms与softnms原创 2020-02-13 13:20:20 · 306 阅读 · 0 评论 -
Accelerating Object Detection by Erasing Background Activations 阅读
Accelerating Object Detection by Erasing Background Activations 阅读原创 2020-02-10 14:39:01 · 275 阅读 · 0 评论 -
Focal loss 详解
focal loss原创 2020-02-10 13:08:40 · 1560 阅读 · 0 评论 -
从 rcnn到 mask rcnn论文理解
RCNNSPPnet Fast RCNNFaster RCNNFPNMask RCNN原创 2020-02-10 13:07:26 · 259 阅读 · 0 评论 -
yolo v1-v3小结
个人博客原创 2020-01-16 23:56:11 · 198 阅读 · 0 评论 -
Densecrf与图像分割代码实例
Densecrf与图像分割原创 2020-01-05 17:43:56 · 1920 阅读 · 0 评论 -
inception 系列
inception 系列原创 2020-01-03 11:15:08 · 242 阅读 · 0 评论 -
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks原创 2020-01-03 11:14:04 · 190 阅读 · 0 评论 -
可分离卷积
可分离卷积原创 2020-01-03 11:12:47 · 217 阅读 · 0 评论 -
动手搭建神经网络:简单联合分割、检测网络
coursera deeplearning.ai目标检测课后实践,构建一个简化版单目标yolo目标检测并添加前景对象分割分支网络结构MASK-Rcnn主要是将目标分割、分类、以及定位融合在一起,其网络结构结构如下此小练习基于mask rcnn的思想,但直接进行box回归,因为是检测单一的前景目标,因此对应于yolo将图片视为一个cell,进行bounding box的回归,因为这个数据集中...原创 2019-11-21 23:58:36 · 861 阅读 · 0 评论 -
keras多标签分类网络
文章目录简谈多分类与多标签分类数据准备数据生成网络结构训练模型简谈多分类与多标签分类简单的说,输入一张图片进行分类:这张图片里面的物体(通常认为只有一个物体)属于某一个类,各个类别之间的概率是竞争关系,取最高概率标签为物体的类别。所以,多分类最后的激活为softmax函数。实际情况下,一个图片只能有一个物体未免太限制了,能不能一次性判断出图片里面多个物体,比如既有人又有车,网络输出含有每...原创 2019-03-29 21:27:35 · 1510 阅读 · 6 评论 -
keras数据增广并保存到本地文件夹
当需要对指定文件夹下的图片进行数据增广时,使用keras的ImageDataGenerator类的flow_from_directory()方法可快速的实现1.首先实例化ImageDataGenerator对象以自己想要的属性 img_datagen = keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,...原创 2019-03-29 18:43:42 · 1347 阅读 · 4 评论 -
视频对象分割(Video Object Segmentation)研究小记
文章目录任务定义与数据集任务定义数据集评价指标技术路线分类经典论文写在前面的话,硕士研究生阶段从接触VOS到深入研究,差不多一共有两年时间。因为自己刚接触这个研究领域的时候,用深度学习做视频分割的还相对较少,嘿嘿,所以相对好发(水)论文,马上毕业了,简单写个总结吧,不针对某篇论文做具体的技术分析。以下任务的定义等主要参考DAVIS benchmark,这个数据集确实推动了这个研究方向。任务...原创 2019-03-06 19:59:01 · 13921 阅读 · 7 评论 -
模板匹配笔记之:相关匹配
模板匹配最近准备把学过的一些知识整理写成博客,加深印象。模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。普通的模板匹配方法属于暴力搜索法,通过将模板图像不断在搜索图上移动...原创 2018-12-20 22:38:50 · 2143 阅读 · 0 评论 -
基于vgg16的半监督视频单目标分割网络
one-shot 半监督视频单目标分割网络实现采用keras实现,网络结构如下。 类似于unet,但没有unet那么多的参数。# coding=utf-8from keras import Input, Modelfrom keras.applications.vgg16 import VGG16from keras.layers import Concatenate, Conv2D,...原创 2019-08-24 21:38:28 · 774 阅读 · 0 评论 -
CycleGAN论文阅读总结及实现
在cyclegan之前,对于两个域的图像进行转化,比如图像风格转换,它们的训练集图像都是成对的.而cyclegan则解决了训练图像必须成对的问题。使生成器的学习过程比image2image更像是两个图像域之间图像“翻译”。下图分别是成对图像训练集与非成对图像训练集例子,成对图像训练时需要一一对应。cyclegancyclegan的网络设计思想本身不复杂。其中包含两个生成器,一个由图...原创 2019-08-25 00:45:40 · 2879 阅读 · 0 评论 -
East:An Efficient and Accurate Scene Text Detector阅读及应用
East是旷视科技2017年发表的论文,针对于场景文本检测。与较早的rcnn,ctpn不同之处个人认为主要在于East以目标检测来做。目标即为检测文本框。因此,East网络也可以轻易的扩展到其他目标检测任务上。我主要在改进版的East基础上做手机号码检测与识别,以及之前的基于yolo的水印检测。OverviewEast的检测流程如图所示,类似于maskRCNN,一个分支做像素级语义分割(二分...原创 2019-08-29 00:16:58 · 418 阅读 · 0 评论 -
CRNN笔记以及数字检测识别实践
主流的OCR识别分为两个部分:先检测出文字区域再识别文字。检测可采用通用的目标检测方法以及针对于文本检测的网络,识别主要是CRNN及其变体。在上文中针对EAST做场景文字检测定位,现在针对OCR的第二部分–识别,以最早的CRNN为例子。然后整合了AavancedEAST以及CRNN,实现场景数字号码检测与识别。CRNN论文笔记论文主要创新点提出卷积循环神经网络(CRNN),组合DCNN和...原创 2019-09-08 20:16:24 · 3483 阅读 · 4 评论 -
从RNN到LSTM小记
记录自己对LSTM结构的理解,以及结合keras在实现LSTM模型时数据的输入数据等的处理。1.SimpleRNN对于多层感知机网络而言,是假设每个输入数据具有独立性。如训练图像分类网络时,每次根据输入图片计算误差更新网络权重,当前输入图像不会对后续输入产生影响。但是对于时序数据而言,如翻译、天气预测、股票预测等,此时输入数据之间具有相关性。因此我门希望网络能够记住当前数据的关键信息,并用之...原创 2019-09-14 16:46:51 · 815 阅读 · 0 评论 -
edge_gan
最近刚好在做分割,顺手玩玩用GAN做边缘检测. 本意是想在BSDS轮廓分割数据集上做,同时验证针对样本极不平衡的损失函数挑选问题,简单做个小结整体结构为CGAN,由于训练数据太少,使用了预训练的VGG16作为baseline. BSDS训练集只有200张图像,因此使用canny算子生成了3万张边缘图像.使用标准二值交叉熵损失作为生成器损失函数. 训练30轮.结果如下:实验使用的训练集图...原创 2019-09-20 00:13:10 · 427 阅读 · 2 评论 -
线性拟合笔记之:Ransac算法
关于Ransac算法RANSAC为Random Sample Consensus,即随机采样一致性算法,是根据一组包含异常数据的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。在计算机视觉中用的比较多,如特征点匹配。本文主要从线性拟合角度分析。Ransac算法有样本数据集如上图所示,其中蓝色为正确样本,绿色和红色为噪声样本,我们想要拟合一个线性模型,如果使用最小二乘法的话,结...原创 2018-12-19 20:38:14 · 3308 阅读 · 5 评论