时间复杂度
(1)时间频度
一个
算法
执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个
算法
都上机测试,只需知道哪个
算法
花费的时间多,哪个
算法
花费的时间少就可以了。并且一个
算法
花费的时间与算法中语句的执行次数
成正比例
,哪个
算法
中语句执行次数多,它花费时间就多。一个
算法
中的语句执行次数称为语句频度或时间频度。记为T(n)。
算法
的
时间复杂度
是指执行算法所需要的计算工作量。
(2)
时间复杂度
一般情况下,
算法
中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为
算法
的渐进
时间复杂度
,简称
时间复杂度
。
在各种不同
算法
中,若
算法
中语句执行次数为一个常数,则
时间复杂度
为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,