时间复杂度的概念

 

时间复杂度
(1)时间频度
一个 算法 执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个 算法 都上机测试,只需知道哪个 算法 花费的时间多,哪个 算法 花费的时间少就可以了。并且一个 算法 花费的时间与算法中语句的执行次数 成正比例 ,哪个 算法 中语句执行次数多,它花费时间就多。一个 算法 中的语句执行次数称为语句频度或时间频度。记为T(n)。 算法 时间复杂度 是指执行算法所需要的计算工作量。
(2) 时间复杂度
在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入 时间复杂度 概念。
一般情况下, 算法 中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为 算法 的渐进 时间复杂度 ,简称 时间复杂度
在各种不同 算法 中,若 算法 中语句执行次数为一个常数,则 时间复杂度 为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
按数量级递增排列,常见的 时间复杂度 有:
常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述 时间复杂度 不断增大, 算法 的执行效率越低。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值