题意:一颗n个结点的树,两种操作: 1、将u到v之间的结点权值加k;2、将u到v之间的边权加k。输出经过修改后所有的边权和点权。
解题思路:做过树链剖分的应该都知道这题肯定是树链剖分题,其实就是一个模板题。但是注意点很多:1、结点有100000个,dfs的时候会爆栈,所以要扩栈; 2、这里的更新操作如果用线段树的update写,时间复杂度O(nlogn),会超时。 这里的成段更新很简单,而且是单点查询,只要用标记法就可以了,不需要用线段树。标记法时间复杂度O(n); 3、网上都说要输入优化才能过,所以我用读入优化写2078MS过的。不用输入优化也能过,时间3218MS。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#include<cstring>
#include<string>
#include<vector>
#define LL __int64
#define N 100005
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 10e-6
using namespace std;
int a[N][2],head[N];
int tot;
struct node
{
int next,v,w;
}edge[N*2];
void addedge(int u,int v)
{
edge[tot].next = head[u];
edge[tot].v = v;
head[u] = tot++;
}
//----------树链剖分----------------------
int siz[N],son[N],dep[N],fa[N];
void dfs1(int u,int pa,int depth)
{
siz[u] = 1; son[u] = 0; fa[u] = pa; dep[u] = depth;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].v;
if(v == pa) continue;
dfs1(v,u,depth+1);
siz[u] += siz[v];
if(siz[v] > siz[ son[u] ])
son[u] = v;
}
}
int top[N],w[N],dfs_clock;
void dfs2(int u,int pa)
{
w[u] = ++dfs_clock;
top[u] = pa;
if(son[u])
dfs2(son[u],pa);
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].v;
if(v != son[u] && v != fa[u])
dfs2(v,v);
}
}
//------------标记法的区间更新------------------
LL ans1[N],ans2[N];
void change1(int x,int y,int k)
{
int f1 = top[x],f2 = top[y];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(x,y);
swap(f1,f2);
}
ans1[ w[f1] ] += k;
ans1[ w[x]+1 ] -= k;
x = fa[f1];
f1 = top[x];
}
if(w[x] > w[y]) swap(x,y);
ans1[ w[x] ] += k;
ans1[ w[y]+1 ] -= k;
}
void change2(int x,int y,int k)
{
int f1 = top[x],f2 = top[y];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(x,y);
swap(f1,f2);
}
ans2[ w[f1] ] += k;
ans2[ w[x]+1 ] -= k;
x = fa[f1];
f1 = top[x];
}
if(w[x] > w[y]) swap(x,y);
ans2[ w[x]+1 ] += k;
ans2[ w[y]+1 ] -= k;
}
inline bool scan_d(int &ret) {
char c; int sgn;
if(c=getchar(),c==EOF) return 0; //EOF
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
int main()
{
int t,cas = 1;
// scanf("%d",&t);
scan_d(t);
while(t--)
{
int n,m;
// scanf("%d%d",&n,&m);
scan_d(n);
scan_d(m);
tot = 0;
memset(head,-1,sizeof(head));
for(int i = 1; i < n; i++){
// scanf("%d%d",&a[i][0],&a[i][1]);
scan_d(a[i][0]);
scan_d(a[i][1]);
addedge(a[i][0],a[i][1]);
addedge(a[i][1],a[i][0]);
}
memset(siz,0,sizeof(siz));
dfs1(1,0,1);
dfs_clock = 0;
dfs2(1,1);
memset(ans1,0,sizeof(ans1));
memset(ans2,0,sizeof(ans2));
while(m--)
{
char s[10];
int u,v,k;
//scanf("%s%d%d%d",s,&u,&v,&k);
scanf("%s",s);
scan_d(u);
scan_d(v);
scan_d(k);
if(s[3] == '1')
change1(u,v,k);
else change2(u,v,k);
}
for(int i = 2; i <= n; i++)
{
ans1[i] += ans1[i-1];
ans2[i] += ans2[i-1];
}
printf("Case #%d:\n",cas++);
int flag = 0;
for(int i = 1; i <= n; i++)
{
if(flag == 0)
printf("%I64d",ans1[ w[i] ]),flag = 1;
else printf(" %I64d",ans1[ w[i] ]);
}
printf("\n");
flag = 0;
for(int i = 1; i < n; i++)
{
if(dep[ a[i][0] ] < dep[ a[i][1] ])
swap(a[i][0],a[i][1]);
if(flag == 0)
printf("%I64d",ans2[ w[a[i][0]] ]),flag = 1;
else printf(" %I64d",ans2[ w[a[i][0]] ]);
}
printf("\n");
}
return 0;
}