2NF
所有非主属性都依赖于主码。
例如:成绩(课程号,学号,姓名,成绩),其不满足2NF
3NF
消除非主属性之间的传递依赖。
例如:工资等级(姓名,工资等级,工资额),其不满足3NF
BCNF
消除主属性之间的传递依赖。即为3NF的延伸。
若R∈BCNF
每一个决定属性集(因素)都包含(候选)码
R中的所有属性(主,非主属性)都完全函数依赖于码
R∈3NF(证明)
若R∈3NF 则 R不一定∈BCNF
在关系模式STJ(S,T,J)中,S表示学生,T表示教师,J表示课程。
每一教师只教一门课。每门课由若干教师教,某一学生选定某门课,就确定了一个固定的教师。某个学生选修某个教师的课就确定了所选课的名称 : (S,J)→T,(S,T)→J,T→J
4NF
消除多值依赖,即键外无依赖。
例如A:一种产品只放在一个仓库中,一个仓库有多个管理员。关系模式R(仓库管理员,仓库号,库存产品号),其不满足4NF。
改为:S(仓库号,仓库管理员),T(仓库号,库存产品号)
例如B:在模式R(系名,教师名,学生名)中,键是(教师名,学生名)。其中系名和教师名,系名和学生名都是多值依赖关系,即系名→→教师名,系名→→学生名,但这两个关系的左部均未包含键,因此不是4NF。若分解成R1(系名,教师名)和R2(系名,学生名),则R1,R2都是4NF。