题意:有n(n \le 15)个圆环,其中有一些已经扣在了一起。现在需要打开尽量少的圆环,使得所有的圆环可以组成一条链(当然,所有打开的圆环最后都要再次闭合)。例如,有5个圆环,1-2,2-3,4-5,则需要打开一个圆环,如圆环4,然后用它穿过圆环3和圆环5后再次闭合圆环4,就可以形成一条链:1-2-3-4-5。(本段摘自《算法竞赛入门经典(第2版)》)
分析:
用二进制枚举断开的圆环数,分析剩下的圆环是否有分支大于2的或者存在环的,如果有则不符合,如果没有,看断开的圆环数+1是否大于等于剩下的圆环组数,如果符合则找到一个解,最后取解的最小值即可。
代码:
#include <iostream>
#include <algorithm>
#include <fstream>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <cmath>
#include <cctype>
#include <stack>
#include <set>
using namespace std;
const int maxn = 15 + 5, INF = 10;
int n, x, y, ans, num, C;
int m[maxn][maxn], v[maxn];
bool two(int s)
{
for (int i = 0; i < n; ++i)
{
int cnt = 0;
for (int j = 0; j < n; ++j)
if (m[i][j] && !(s & (1 << i)) && !(s & (1 << j)))
{
++cnt;
if (cnt == 3)
return true;
}
}
return false;
}
bool DFS(int x, int f, int s)
{
v[x] = 1;
for (int i = 0; i < n; ++i)
if (m[x][i] && !(s & (1 << i)))
{
if (!v[i])
{
if (DFS(i, x, s))
return true;
}
else if (i != f)
return true;
}
return false;
}
bool circle(int s)
{
memset(v, 0, sizeof(v));
for (int i = 0; i < n; ++i)
if (!v[i] && !(s & (1 << i)))
{
if (DFS(i, -1, s))
return true;
++num;
}
return false;
}
int calc(int s)
{
int res = 0;
for (int i = 0; i < n; ++i)
{
if (s & 1)
++res;
s >>= 1;
}
return res;
}
int main()
{
while (~scanf("%d", &n), n)
{
ans = n;
memset(m, 0, sizeof(m));
while (scanf("%d%d", &x, &y), x != -1 && y != -1)
{
m[x - 1][y - 1] = 1;
m[y - 1][x - 1] = 1;
}
for (int i = 0; i < (1 << n); ++i)
{
num = 0;
if (two(i) || circle(i))
continue;
int tmp = calc(i);
if (num - 1 <= tmp)
ans = min(ans, tmp);
}
printf("Set %d: Minimum links to open is %d\n", ++C, ans);
}
return 0;
}