动态规划

第一遍刷了一些动态规划的题目,很多只能参考别人的思路后写出来的。但还是没有掌握动态规划的精髓,所以回过来重新来一遍,并记录一下解题思路,以及每道题目的优化的方法。

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

普通解法

  1. dp数据定义
    定义dp[m+1][n+1],意义为当前有i个0,j个1时子集的个数。
  2. 转换公式
    dp[i][j] = max(1 + dp[i - n0][j - n1], dp[i][j]);
    n0 表示当前字符串所包含的0的个数,n1表示包含的1的个数;
	//核心代码
	for (int z = m; z >= n0; z--){
		for (int o = n; o >= n1; o--){
		   dp[z][o] = max(1 + dp[z - n0][o - n1], dp[z][o]);
		}
	}
	/**
	* 选取一个字符串后,将每种可能(即z个0,o个1,且满足题意的情况)都取子串个数的最大值
	* dp[m][n]既是最终的结果。
	**/

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

普通解法

  1. dp数组定义
    定义dp[len],len为整数数组长度。表示从0到第i个位置子串所能构成满足题意的子序列最大长度。
  2. 核心代码
int j = i -1;
while (j >= 0)
{
    if (nums[j] < nums[i]){
        dp[i] = max(dp[j] + 1, dp[i]);
    }
    j--;
}
// 对于第i个元素,需要遍历i之前所有比nums[i]小的元素所能构成最大子序列。

该方法时间复杂度为 O ( n 2 ) O(n^2) O(n2)
我也试了从后往前遍历,即i从len-2开始递减到0,计算到len-1位置,所能构成子序列的方式,用时少了一倍。

  • 题目:978. 最长湍流子数组
    当 A 的子数组 A[i], A[i+1], …, A[j] 满足下列条件时,我们称其为湍流子数组:

若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。

返回 A 的最大湍流子数组的长度。

普通解法

  1. dp数组定义
    定义dp[len],len为整数数组长度。表示加入当前元素后所能构成最大的子数组的长度。
  2. 转换公式
    如果arr[i] < arr[ i -1] 且 arr[i] < arr[i + 1], 或者 arr[i] > arr[ i -1] 且 arr[i] > arr[i + 1],则当前dp[i] = dp[i - 1] + 1
  3. 关键代码
bool is_up = arr[1] < arr[0] ? true : false;
// dp[0] = 1;

for (size_t i = 1; i < len; i++)
{
    if (arr[i] == arr[i - 1]){
        is_up = -1;
    }
    else if ((is_up == 1 && arr[i] < arr[i - 1]) || 
        (is_up == 0 && arr[i] > arr[i - 1])){
        dp[i] = dp[i - 1] + 1;
        max_l = max_l < dp[i] ? dp[i] : max_l;
        is_up =  1 - is_up;
    }else{
        if (arr[i] < arr[i - 1]){
            dp[i] = 2;
            is_up = 0;
        }else if(arr[i] > arr[i - 1]){
            dp[i] = 2;
            is_up = 1;
        }
    }
}

  • Reference

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-turbulent-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值