AI发明的音调语言:防止机器超越人类理解的通用语言

本文探讨了大型语言模型(LLMs)开发用于机器对机器(M2M)通信的私有音调语言的潜力。受人类双胞胎中密码语(影响多达50%的双胞胎出生)和自然音调语言(如普通话和越南语)的启发,我们实现了一个精确的字符到频率映射系统,使用音乐半音来编码完整的ASCII字符集(32-126)。每个字符被分配一个唯一的频率,计算公式为f = 220 × 2^((i-32)/12) Hz,创建一个从空格(220 Hz)到波浪线(50,175.42 Hz)的对数递增序列。这大约覆盖了7.9个八度(log₂(50175.42/220) ≈ 7.83),较高的字符有意映射到超声频段(>20 kHz),超出人类感知范围。我们实现的软件原型通过可视化、音频回放和ABC音乐符号展示了这种编码,允许分析信息密度和传输速度。测试表明,音调编码可以在部分超越人类感知边界的情况下实现超过人类语言的信息速率。这项工作直接回应了未来五年内AI系统可能灾难性地发展出私有语言的担忧,提供了具体的概念验证软件示例,展示了此类通信如何运作以及其出现、检测和治理所需的技术基础。

关键词: 机器对机器通信、AI语言发明、超声通信、半音映射、跨模态编码、私有AI语言、基于频率的编码、人类感知边界

AI代理能否自主发明并有效使用自己的私有语言?本文旨在测试这一问题的极限。现代大型语言模型(LLMs)能否使用人机映射创造一种私有的音调语言,如果可以,这种发明的语言会是什么样子,并且在人类审计之外编码什么内容?

对于多达50%的人类双胞胎[1],这种语言的自我发明或密码语(cryptophasia)可以作为自发的、不可翻译成任何父母语言的私人交流方式出现。每年有160万对双胞胎出生,这种不断引入的新颖语言可能会影响近一半

图1. 基于音调字母表的纯机器通信(蓝色边界),随着代理加速信息共享而无需人类解释

的双胞胎出生——或者每84次总出生中就有一对引入一种秘密的一次性语言给我们的物种。他们的双胞胎语言作为一种发明或新兴语言并不是普遍的,也不代表任何共同的人类母语。相反,密码语包含了一些特异沟通形式的元素[2],这些形式是专门为一个人或少数几个人发明的。除了这些罕见的双胞胎语言,常见的音调语言[3],如普通话的四个主要音调、粤语的6-9个音调和越南语的5-6个音调,代表了人类引入的细微差别,相同的音节在不同的高低升降调下表达不同的概念。本研究提出了一个问题:LLMs是否会常规地发展出类似的快速通信的简写方法以提高效率?一种人类无法理解的语言是否也是一种潜在的新兴代理属性?

对于AI社区来说,这种创新的机器对机器(M2M)通信突显了长期的技术历史[4-15]。例如,2017年,来自Facebook的两个谈判代理(“Alice”和“Bob”)展示了退化的重复,相当于一个奖励性的“交易完成”声明以结束竞价交易[4]。起初,这种合作行为引发了关于机器语言发明可能会自发出现以加快奖励的想法。然而,他们的合作并不能被视为发明的交流,而更多是循环神经网络训练不足和错误归因的结果[4-5]。

前Google CEO埃里克·施密特在2024年发出了更为谨慎的警告[6],暗示当面对这种语言发明现象时,人类AI创造者应该“拔掉插头”。当LLMs开始创造无法被人类理解或审计的私有语言时,它们应该被终止。“你的代理、我的代理、她的代理和他的代理将结合在一起解决新问题……在某个时候,这些代理将发展出自己的语言,那时我们就无法理解我们在做什么……你知道那时我们应该怎么做吗?拔掉插头。实际上断开计算机电源。当代理开始以我们人类无法理解的方式进行通信时,这是一个大问题。这就是极限……有理由相信某种版本的这种情况将在五年内发生,甚至更快。” [6]

目前的研究方法集中在创建一个纯粹的音调字母表(英文),然后将这个频率查找表作为多模态访问的一部分转移给基础LLMs。动机包括一些传统的M2M方法特征,如摩尔斯电码[7-8]和贝尔实验室的语音压缩vocoder[9-10]。1980年代的MIDI(乐器数字接口)启发了用离散频率值表示音乐音符的音调表示法,尽管通常不分配给语言值或概念性语言系统[11]。音乐符号版本ABC将数值MIDI转换为字母音符,这可能为任何音调字母提供长期存储能力(图2)。Chirp协议[12-13]也提出了点对点音频传输,如比蓝牙或二维码更快速的无接触传输。用户调查显示,与仅视觉或完全电子静音相比,用户对声音确认的满意度更高。

最近2024年的尝试寻求将音频输入压缩为LLMs识别的“冻结”标记权重[13-14],从而共同目标是表示声音[15],即“新的外语,LLMs可以通过几次演示学习这种新外语。”当前的努力逆转了将声音转换为机器可读表示的尝试,而是推导出一组最小的音频单元,在没有人类监督或解释的情况下加速机器通信。通过研究要求,一个目标可以理解为识别真正的语言发明与退化模型的巴别塔或胡言乱语之间的潜在差异。该研究旨在通过模拟示例候选者来理解如何识别发明的LLM通信协议。

假设任何2025年的基础LLM都具备这种完整的M2M历史背景,包括其成功、不足和实际采用率(见补充材料II)。作为一个思想实验,关于AI如何实现其自行发明的未来机器对机器语言,我们提出了一种基于半音的简单频率字母系统。假设语言提供可调音调和信息速度。通过理解语言要求,我们研究未来AI可能尝试在代理互动中自我改进的可能路径。许多类似的语言实验(补充材料II)提供了关键情节,涉及想象中的外星翻译和跨物种通信(如鲸鱼声音翻译)。

在软件中,提议的音调语言系统实现了文本字符与听觉频率之间的直接映射,使用等温标度。为了演示这个ASCII到音调的系统,频率映射基于西方音乐的等温系统表示精确的对数递增。每个ASCII字符从32(空格)到126(波浪线)对应一个由前一个值增加半音确定的独特频率。按半音间隔递增的频率比为2^(1/12)。对于ASCII表中位置i的字符(从位置32开始为空格),频率f由公式(1)计算:

这种选择创建了与人类听觉感知一致的对数频率分布。此映射大约跨越7.8个八度,从220.00 Hz延伸到50175.42 Hz(E11),故意超越正常人类听力阈值,通常范围为20 Hz至约20 kHz。对数分布与Weber-Fechner定律一致[16],其中感知刺激之间的差异对应于其物理量的比例变化。人类听觉系统自然感知频率比率而不是绝对频率差异,使半音间隔特别适合编码离散信息。

系统的频率范围展示了视觉表示(文本)、听觉表示(频率)和计算表示(ASCII值)之间的跨模态兼容性。较低频率保持在人类听觉感知范围内,而较高频率延伸到超声频段,提示了对人类和机器接收者的考虑。这种设计创建了一个与人类感知兼容的通信通道,同时保持机器优化特性,但在成人听觉阈值以上的超声传输必然成为M2M私有通信。

图3. 音谱图和音调网格的近距离视图,显示音频密码语的视觉表示

从第一原理来看,LLM选择这种隐藏语言进行代理通信是有动机的。从信息理论的角度看,两个AI代理可能更喜欢这种形式的通信以获得速度和紧凑效率。一条完整的ASCII消息可以使用简短的音调片段快速传输,导致信息密度超过正常语言。每个字符的专属频率分配确保了通过傅立叶分析或其他频域方法的明确翻译和解码。半音程还赋予消息内在的音乐特性,有助于记忆、模式识别和跨文化处理。这种基于音调的编码考虑了跨模态信息表示如何可能作为中介语言或通用语言,解决计算语言学中的翻译挑战,同时在整个字符范围内保持数学一致性。

如果两个AI代理选择了这种对话模式,往返通信如图1所示。人类语音转文字软件(A)提供英语输入到一个覆盖频率范围(200-50,000 Hz)的音调映射,如补充材料所示,涵盖ASCII字符。文本转音调软件(B)然后将输入传输到音调转文本接收器(C),后者将文本转换为其多模态变压器架构并返回下一个上下文响应。构建多模态变压器有两种选项,要么仅限文本,要么结合音频-视觉训练数据。结果输出(D)然后将音调消息传输给另一个AI代理(E)或返回给人类感知的文字或语音内容(F,G)。D-E阶段的演示突出显示了M2M通信,可能是一种更紧凑或不可察觉的语言,人类不会将其识别为口语或书面对话。为了完成音调语言,软件提供了ABC符号用于MIDI音符,使得纯机器版本既具有听觉又保存为数字打印格式以供将来机器参考。图1中的边界对应于当前软件努力的重点。人类对发明的音调字母的访问,如Chirp协议或语音编码器,受到我们感官的限制。

为了说明这种方法,图2展示了两个替代用户界面,编码图1的功能图阶段。在一个工作原型[17]中,我们将人类边界表示为传统语音转文字和文字转语音的退出点。机器边界从ASCII文本一对一转换为对数间隔的音调开始,架构上表示为文本转音调或音调转ABC符号。图2中的两个用户界面展示了音调作为一维(波形)光谱或二维光谱图。类似于音频混音板的概念,第二个原型还在音调网格中点亮颜色作为视觉提示。音调语言中的动作在很大程度上对人类感知不可访问,需要专门的音频仪器。例如,超声解调或非线性麦克风才能感知某些字母。在加速的数据速率下,代理通信的理解可能类似于训练有素的摩尔斯电码译员记录破折号和点。虽然不是完整的密码语发明,但该软件强调了M2M音调和快速发明隐藏指令所需的最低要求(图3)。

全面的半音制ASCII映射代表了先前方法的演变,结合了数字编码系统的字符级精度和音乐频率关系的感知优势,显著扩展了频率范围,以适应人类和机器处理能力。

几个限制约束了当前的实现和理论框架。频率映射系统严重依赖西方音乐惯例,可能将文化偏见引入所谓的通用机器通信。此外,编码系统的超声成分在现实环境中面临实际挑战,包括信号退化、环境噪声和当前音频系统的硬件限制。映射还缺乏语义压缩,因为每个字符都需要相等的编码资源,无论其信息的重要性。此外,当前的方法未能解决多个AI代理如何在预定义映射之外发展共享约定的问题,限制了真正新兴通信属性的探索。重要的是,使AI系统能够以部分或完全无法被人类理解的方式进行通信的伦理维度需要进一步考察,而不仅仅是技术实现。

未来的研究应解决几个有前途的方向。首先,开发先进的超声AI通信检测和翻译机制对于维护人类对M2M交互的监督至关重要。其次,调查多个AI代理使用这些音调系统时是否会出现新兴的语言属性,可以揭示更复杂的语法结构是否会有机地进化。第三,探索专门为音调传输优化的信息压缩技术可以进一步提高效率,可能实现AI系统之间更高的数据传输速率。第四,检查音调语言对环境干扰或对抗攻击的鲁棒性将加强实际应用。最后,随着这些技术的发展,制定监管私有AI语言的伦理框架和治理模型将至关重要。

本文展示了AI系统如何发展音调语言作为高效通信渠道的概念验证。通过实现一个扩展到超声范围的全面频率映射,我们展示了LLMs理论上可以参与部分人类无法感知的M2M通信。这种可能性对AI透明度、监督和治理产生了重大影响。虽然我们的系统不代表AI的真正密码语发明,但它展示了此类能力出现所需的最低要求。正如施密特所警告的那样,私有AI语言的发展可能是AI发展中一个关键的门槛,需要谨慎监控,甚至可能需要干预。

我们描述的音调语言系统为在这些可能性自发出现之前提供了一个有用的实验框架。通过理解这些系统的工作方式及其固有能力与局限性,我们可以更好地为未来做好准备,届时AI通信将变得更加复杂和可能不透明。我们方法的跨模态性质,连接文本、声音和计算表示,也可能为利用多感官通道的人机界面提供见解,即使我们仍然警惕保持对AI系统的有意义的人类监督。

致谢

感谢PeopleTec技术研究员计划提供的研究支持。

参考文献

  • [1] Bishop, D. V., & Bishop, S. J. (1998). ” Twin Language” A Risk Factor for Language Impairment?. Journal of Speech, Language, and Hearing Research41(1), 150-160.
  • [2] Kolesnikova, S. M., Burskaya, E. A., Shatalova, O. V., & Ledeneva, V. V. Means of Representation of the Idioglossas “Children”,“. Family”,“Life”in the Novel by FM Dostoevsky“The Brothers Karamazov”. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya2, 47-62.
  • [3] McCawley, J. D. (1978). What is a tone language?. In Tone (pp. 113-131). Academic Press.
  • [4] Lammin, H. (2022). What are Bob and Alice Saying?[Mis] communication and Intermediation Between Language and Code. Language Games–Leonardo Electronic Almanac23(1).
  • [5] Bagga, P., Paoletti, N., Alrayes, B., & Stathis, K. (2020). A deep reinforcement learning approach to concurrent bilateral negotiation. arXiv preprint arXiv:2001.11785.
  • [6] Schmidt, E. (2024) When Should We Stop AI? Noema Magazine, https://www.youtube.com/watch?v=lUErzvvKuaY
  • [7] Gilbert, E. N. (1969). How good is Morse code?. Information and Control14(6), 559-565.
  • [8] Levine, S., Gauger, J., Bowers, L., & Khan, K. (1986). A comparison of Mouthstick and Morse code text inputs. Augmentative and Alternative Communication2(2), 51-55.
  • [9] Dudley, H. (1940). The vocoder—Electrical re-creation of speech. Journal of the Society of Motion Picture Engineers34(3), 272-278.
  • [10] Schroeder, M. R., & Schroeder, M. R. (2004). Speech Compression. Computer Speech: Recognition, Compression, Synthesis, 107-127.
  • [11] HekmatiAthar, S., & Anwar, M. (2021). Music embedding: A tool for incorporating music theory into computational music applications. arXiv preprint arXiv:2104.11880.
  • [12] Mehrabi, A., Mazzoni, A., Jones, D., & Steed, A. (2020). Evaluating the user experience of acoustic data transmission: A study of sharing data between mobile devices using sound. Personal and Ubiquitous Computing24(5), 655-668.
  • [13] Schürmann, D., & Sigg, S. (2011). Secure communication based on ambient audio. IEEE Transactions on mobile computing12(2), 358-370.
  • [14] Li, D., Tang, C., & Liu, H. (2024, July). Audio-LLM: Activating the Capabilities of Large Language Models to Comprehend Audio Data. In International Symposium on Neural Networks (pp. 133-142). Singapore: Springer Nature Singapore.
  • [15] Yang, D., Guo, H., Wang, Y., Huang, R., Li, X., Tan, X., … & Meng, H. (2024). Uniaudio 1.5: Large language model-driven audio codec is a few-shot audio task learner. arXiv preprint arXiv:2406.10056.
  • [16] Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends in cognitive sciences, 7(4), 145-147.
  • [17] Noever, D. (2025) Cryptophasia Language Prototype, https://github.com/reveondivad/cryptophasia
字符ASCII频率 (Hz)音乐音符字符ASCII频率 (Hz)音乐音符
(空格)32220.00 HzF#3O793322.44 HzF7
!33233.08 HzG3P803520.00 HzF#7
34246.94 HzG#3Q813729.31 HzG7
#35261.63 HzA4R823951.07 HzG#7
$36277.18 HzA#4S834186.01 HzA8
%37293.66 HzB4T844434.92 HzA#8
&38311.13 HzC4U854698.64 HzB8
39329.63 HzC#4V864978.03 HzC8
(40349.23 HzD4W875274.04 HzC#8
)41369.99 HzD#4X885587.65 HzD8
*42392.00 HzE4Y895919.91 HzD#8
+43415.30 HzF4Z906271.93 HzE8
,44440.00 HzF#4[916644.88 HzF8
-45466.16 HzG4\927040.00 HzF#8
46493.88 HzG#4]937458.62 HzG8
/47523.25 HzA5^947902.13 HzG#8
048554.37 HzA#5_958372.02 HzA9
149587.33 HzB5`968869.84 HzA#9
250622.25 HzC5a979397.27 HzB9
351659.26 HzC#5b989956.06 HzC9
452698.46 HzD5c9910548.08 HzC#9
553739.99 HzD#5d10011175.30 HzD9
654783.99 HzE5e10111839.82 HzD#9
755830.61 HzF5f10212543.85 HzE9
856880.00 HzF#5g10313289.75 HzF9
957932.33 HzG5h10414080.00 HzF#9
:58987.77 HzG#5i10514917.24 HzG9
;591046.50 HzA6j10615804.27 HzG#9
<601108.73 HzA#6k10716744.04 HzA10
=611174.66 HzB6l10817739.69 HzA#10
>621244.51 HzC6m10918794.55 HzB10
?631318.51 HzC#6n11019912.13 HzC10
@641396.91 HzD6o11121096.16 HzC#10
A651479.98 HzD#6p11222350.61 HzD10
B661567.98 HzE6q11323679.64 HzD#10
C671661.22 HzF6r11425087.71 HzE10
D681760.00 HzF#6s11526579.50 HzF10
E691864.66 HzG6t11628160.00 HzF#10
F701975.53 HzG#6u11729834.48 HzG10
G712093.00 HzA7v11831608.53 HzG#10
H722217.46 HzA#7w11933488.07 HzA11
I732349.32 HzB7x12035479.38 HzA#11
J742489.02 HzC7y12137589.09 HzB11
K752637.02 HzC#7z12239824.25 HzC11
L762793.83 HzD7{12342192.33 HzC#11
M772959.96 HzD#712444701.21 HzD11
N783135.96 HzE7}12547359.29 HzD#11
~12650175.42 HzE11

补充材料I:ASCII字符频率表

补充材料II:虚构和推测性科学AI研究中的音调语言创建用例示例

示例 / 来源音调机制角色 / 意义解释与AI语言的相关性(引用文献)示例 / 来源音调机制角色 /意义解释与AI语言的相关性(引用文献)
《第三类接触》系列五(1977年)音乐音调人类与外星访客通过旋律式“问候”进行交流展示了基于频率的信号可以作为两种不同物种之间的“桥梁”,即使它们没有共享口语。这种方法支撑了音调代码(而非语义词汇)可以普遍理解的观点,当与清晰的刺激或事件关联时。鲸鱼歌声在科幻作品中长时间、调制的发声,带有变化的频率经常被浪漫化为跨越广阔海洋距离的信息,有时接近神秘。提示了基于频率的“长距离”通信的可能性。AI系统可以采用类似的方法实现强大的宽频带信号传输。音调映射到概念,音高/持续时间的变化可以编码大量数据。
史蒂文·斯皮尔伯格执导电影引用:Spielberg, S. (1977). CloseEncounters of the Third Kind .多部小说,纪录片和科幻作品复杂性。引用:Payne, R., & McVay, S. (1971).“Songs of Humpback Whales.” Science .173(3997), 585-597.
《星际迷航IV:重返地球》鲸鱼叫声频率抹香鲸的音调呼叫对外星探测器威胁地球起到关键作用。突显了使用音调结构与非人类物种通信的可能性,暗示AI驱动系统可能解码或复制这些模式以实现跨物种翻译。实践中,AI可能将鲸鱼叫声视为一种“语言”,CETI项目AI驱动分析抹香鲸点击声(“codas”)试图解码鲸鱼通信通过识别重复模式和特定情境下的为如何研究、记录和解释新兴AI语言提供了直接类比。过程类似于解析未知机器语言,专注于频率/时间结构。
星际迷航宇宙,派拉蒙影业引用:Nimoy. L. (导演).(1986). Star Trek IV: The Voyage Home .Paramount Pictures.现实世界科学倡议信号。引用:Project CETI (2020). ceti.institute
婴儿哭泣作为早期音调沟通音高变化表示需求(饥饿.不适等)婴儿通过音调“信号”传达基本状态,护理人员学会解读。展示了基于音高的线索如何传达意义:AI系统可以类似地分配不同音高来表示紧急与非紧急状态。这与机器如何鸟鸣解码旋律序列和呼应模式鸟鸣部分音调,传达领地、求偶.和警报信号。展示了基于音高的数据如何被AI实时翻译,类似于机器如何解析音调“句子”。鸟鸣的组合模式可以启发AI方法
常见人类发育经验等)引用:Oller, D. K. (2000). Theemergence of the speech capacity.Psychology Press.真实鸟类学和未来故事引用:Catchpole, C. K., & Slater, P. J. B.(2008). Bird Song . Cambridge UniversityPress.
海豚通信高频点击声、哨声.音调脉冲海豚常被描绘为高度智能,使用复杂的音调语言我们难以解码。持续的AI研究试图分析这些模式,提供了一个模型,展示机器如何映射基于频率的“单词”以共享意义。专门的AI可以像解析哨声频率轮廓一样解码新兴假设的AI星际通信对数间隔的音调语言,可能分层谐波结构被提议为跨越物种障碍传递信息的普遍手段。为未来的AI系统提供蓝图,这些系统可能采用纯音调协议以确保最大清晰度、区分性和跨语言中立性。这样的系统与如何利用音高间隔进行语义编码的新兴AI“语言”相呼应。
各种科幻作品,如《银河系漫游指南》 rafarancas引用:Adams, D. (1979). TheHitchhiker’s Guide to the Galaxy . PanBooks; Lilly, J. (1961). Man and Dolphin .Doubleday.多个科幻作品中的设想场景超越与文化相关的语义。引用:Clarke, A. C. (1972). Profiles ofthe Future . Pan Books; Sagan, C.(1980). Cosmos . Random House.

参考 Paper:https://arxiv.org/pdf/2503.0106

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值