当前的人工智能心理咨询系统在维持有效的长期客户参与方面面临挑战。通过与咨询师进行形成性研究和系统的文献综述,我们确定了人工智能咨询互动中的五个关键设计考虑因素。基于这些见解,我们提出了CA+,一个 C ognition A ugmented咨询框架,通过三个组件增强情境理解:(1)治疗策略模块:实施基于客户反馈的双向适应性的分层目标-会话-行动规划;(2)沟通形式模块:协调平行的指导和共情路径,以实现平衡的治疗进展和情感共鸣;(3)信息管理:利用客户档案和治疗知识数据库进行动态、情境感知的干预。为期三天的纵向研究表明,与基线系统相比,CA+在客户参与度、感知共情和整体满意度方面有显著改进。此外,两位持证咨询师确认了其高度专业性。我们的研究表明,通过认知理论增强大型语言模型在心理咨询服务中的参与潜力,这可能为未来的计算交互创新提供灵感。
1 引言
近年来,基于人工智能(AI)的心理健康咨询系统作为一种应对全球心理健康专业人士短缺的有希望的解决方案逐渐兴起,提供了更易获取的心理支持选项 (Shum, He, and Li 2018; Prochaska et al. 2021) 。多项研究表明,这些系统可以将服务范围扩展到以前未被覆盖的人群,并减少寻求帮助行为的障碍。随着自然语言处理技术的进步,尤其是大型语言模型(LLMs)的出现,增强了对话能力,使治疗互动中能够进行更细致的情感反应和更好的情境处理 (Chen et al. 2024; Algherairy and Ahmed 2025) 。例如,这些系统现在表现出更强的能力来识别情感模式并维持对话流程,这是早期基于规则的方法无法做到的,从而促进了更自然和有效的咨询会议。
尽管取得了这些技术进步,但一个根本性挑战仍然存在:维持长期客户的参与。多项研究报告称保留率在20%至52%之间,这往往导致治疗中断和疗效下降 (Gual-Montolio et al. 2022; Burns et al. 2011) 。
最近的研究和商业领域的创新正在积极解决参与差距这一挑战——即如何在长时间内维持连续、个性化和专业的互动。在研究领域,像PsycoLLM这样的模型通过临床对话数据增强了认知和情感分析,直接促进持续的客户参与 (Hu et al. 2024) 。同样,MemoryBank通过高级长期记忆机制实现了跨会话的持续个性化;Todak利用多模态反馈(言语和非言语)保持治疗连贯性;Trust through Words量化系统互动如何影响用户理解和治疗联盟。
在商业领域,平台正在扩展专业咨询的关键元素以提高参与度。例如,Woebot Health 1 将自己定位为“与你同行的盟友”,使用循证CBT技术并强调关系连续性,以建立持久的治疗纽带。Manifest 2 将正式的自我照顾重新定义为日常挑战,鼓励稳定参与,而Hume AI 3 (Brooks et al. 2023) 利用其同理心语音接口捕捉微妙的情感线索,丰富治疗评估并加深整体参与度。
与这些进步并行的是,人机交互(HCI)社区在解决AI心理健康干预中的参与挑战方面取得了重大进展。研究探索了用户接受度和界面设计以改善初始采纳和可用性 (Chandrashekar 2018; Haque and Rubya 2022) 。研究表明,这些系统可以提供基本的心理支持,并有可能触及未被覆盖的人群,通过提高可及性可能增加参与度 (Vaidyam et al. 2019) 。研究还表明,AI系统能够处理基本的多轮互动,为更吸引人和复杂的咨询场景奠定基础 (Fitzpatrick, Darcy, and Vierhile 2017) 。
即使有了这些显著的进步,维持长期客户参与仍然是HCI领域中的一个关键且尚未解决的问题。一个重要的限制是当前AI系统难以维持多会话所需的持续情境意识和适应性支持,这对有效咨询至关重要 (Vaidyam et al. 2019; Chandrashekar 2018; Miner et al. 2016) 。虽然LLMs在单轮、任务导向生成方面表现出色,但在模仿人类咨询会话中观察到的适应性和多轮对话管理方面仍显不足 (Wang et al. 2023) 。
因此,为了应对当前AI咨询系统中的已识别限制,我们进行了全面的预备调查,结合实践经验与理论基础(第 3 节)。我们的研究遵循两条互补路径:涉及与人类咨询师访谈的形成性研究以捕捉隐含的专业知识,以及对AI咨询系统的技术方法和研究空白的主题审查。这种双重方法产生了五个关键的设计考虑因素,指导我们的系统开发:(1)增强认知的分层思考,(2)概念驱动的隐式客户画像,(3)书式数据生成和检索,(4)适应性共情和生态自我,(5)适应AI特定的客户需求。
基于这些设计考虑因素,我们提出了CA+,一个 C ognition A ugmented C ounselor A gent框架(第 4 节)。CA+引入了一种新的认知增强推理方法,显著提高了基于LLM的咨询代理在多轮情境意识和提供吸引人、个性化、专业一致支持方面的能力。我们通过两项综合研究评估了所提出的框架(第 5 节和第 6 节):一项为期三天的多轮互动实验,涉及24名客户,比较了CA+与基线系统的性能;以及由两名持证咨询师进行的评估,评估系统的专业性和对咨询标准的遵守情况。我们的评估显示,CA+在咨询质量指标、客户参与指标和用户反馈方面显著优于基线系统。CA+框架包括三个创新组件:(1) 治疗策略模块 ,实施具有双向规划机制的分层三层次结构以实现动态治疗适应;(2) 沟通形式模块 ,通过整合指导和共情路径来确保治疗效果和情感共鸣;(3) 信息管理和存储 ,维护全面的客户记录和结构化的治疗知识以便于咨询期间实时检索。
总之,本文的贡献如下:
- CA+,一种新颖的基于LLM的咨询代理框架,采用增强认知的推理方法来提高多轮情境意识,并提供个性化、专业一致的心理健康支持。
- 经持证咨询师验证的CA+系统的专业性符合咨询标准。
- 基于系统开发和实证研究的设计启示和指南,用于将LLMs集成到心理健康支持系统中。
2 相关工作
以下章节回顾了现有文献中关于AI辅助心理健康干预的研究(第 2.1 节),探讨了其演变过程以及用户参与挑战(第 2.2 节),并介绍了提高治疗效果的方法(第 2.3 节)。
2.1 AI辅助心理健康干预的演变与前景
AI咨询师可广泛定义为与用户进行对话以提供心理支持的计算系统。该领域的早期努力依赖于基于规则的系统,这些系统使用预定义脚本和决策树模拟咨询会话 (Abd-alrazaq et al. 2019) 。例如,ELIZA、Woebot、TeenChat 和LOUISE等系统通过结构化对话流提供治疗干预和情感支持 (Weizenbaum 1966; Fitzpatrick, Darcy, and Vierhile 2017; Huang et al. 2015; Wargnier et al. 2018) 。这些系统在灵活性和适应性方面受到限制,有时会导致响应缺乏有效治疗所需的情感深度和同理心 (Vaidyam et al. 2019) 。
随着机器学习,特别是深度学习的引入,AI咨询师的发展经历了重大转变,使得模型能够更好地理解和生成类似人类的语言 (Devlin et al. 2019) 。基于Transformer的模型如GPT(Generative Pre-trained Transformer)进一步推动了这些能力,因为它们是在大量文本数据上训练的,允许生成适合动态咨询对话的情境相关且连贯的响应 (Brown et al. 2020) 。LLMs,如GPT-3,已经表现出参与长时间、富有同情心对话的能力,提供个性化的心理健康支持。
尽管取得了这些技术进步,目前的研究还指出了与人类咨询师相比的重大局限性 (Luxton 2014; Miner, Milstein, and Hancock 2017) 。虽然这些AI系统可以生成情境相关的响应,但它们缺乏人类专业人士的稳健性、可靠性和情感智慧 (Miner, Milstein, and Hancock 2017; Brown et al. 2020) 。这些模型在维持跨长时间互动的连贯上下文方面遇到困难,常常产生不一致或不适当的响应 (Brown et al. 2020; Vaidyam et al. 2019) 。尽管它们的输出表面上看似合理,但通常缺乏解决复杂情感问题所需的深度和敏感性 (Devlin et al. 2019) 。尽管它们在单轮、任务导向生成方面表现卓越,但在复制人类咨询师在多轮对话管理方面的适应性方面仍有不足。
因此,为了应对当前AI咨询系统中已识别的局限性,我们进行了全面的预备调查,结合实践经验与理论基础(第 3 节)。我们的研究遵循两条互补路径:涉及与人类咨询师访谈的形成性研究以捕捉隐含的专业知识,以及对AI咨询系统的主题审查以考察技术方法和研究空白。这种双重方法产生了五个关键设计考虑因素,指导我们的系统开发:(1)增强认知的分层思维,(2)概念驱动的隐式客户画像,(3)书式数据生成和检索,(4)适应性共情和生态自我,(5)适应AI特定的客户期望。
基于这些设计考虑因素,我们提出了CA+,一个 C ognition A ugmented C ounselor A gent框架(第 4 节)。CA+引入了一种新的认知增强推理方法,显著提高了基于LLM的咨询代理在多轮情境意识和提供吸引人、个性化、专业一致支持方面的能力。我们通过两项综合研究评估了所提出的框架(第 5 节和第 6 节):一项为期三天的多轮互动实验,涉及24名客户,比较了CA+与基线系统的性能;以及由两名持证咨询师进行的评估,评估系统的专业性和对咨询标准的遵守情况。我们的评估显示,CA+在咨询质量指标、客户参与指标和用户反馈方面显著优于基线系统。CA+框架包括三个创新组件:(1) 治疗策略模块 ,实施具有双向规划机制的分层三层结构以实现动态治疗适应;(2) 沟通形式模块 ,通过整合指导和共情路径确保治疗效果和情感共鸣;(3) 信息管理和存储 ,维护全面的客户记录和结构化的治疗知识,以便在咨询会话期间进行高效的实时检索。
3 形成性研究:了解人类和AI咨询参与
本章展示了我们对人类咨询师实践和AI咨询方法的形成性调查。我们采用混合方法设计,首先通过从业者访谈检查治疗干预措施,重点关注治疗程序和客户参与(第 3.1 节)。然后我们系统地回顾现有的AI咨询系统以识别关键实施差距(第 3.2 节)。我们的方法产生了五个具体的设计考虑因素(第 3.3 节)。这种综合方法将人类治疗专业知识与技术能力相结合,为我们将在后续章节中详细阐述的咨询代理架构奠定了基础。
3.1 人类咨询师实践的形成性研究
作为我们双轨研究方法的第一部分,这项形成性研究考察了人类咨询师的专业知识、认知过程和决策策略。我们的调查集中在咨询实践中直接告知AI设计要求的三个关键维度:(1)治疗程序(第 3.1.2 节),(2)战略性的自我披露结合客户参与(第 3.1.3 节),探讨咨询师如何建立融洽关系和信任,以及(3)专业文档实践(第 3.1.4 节)。理解这些元素为我们的AI咨询师设计奠定了基础要求。
3.1.1 方法和参与者
我们通过专业网络招募了五位持证心理咨询师,包括一位监督咨询师/教授和四位执业咨询师,如表 [tab:formative_demographics] 所示。所有参与者都在从事心理咨询服务,并熟悉治疗过程和实际应用。监督咨询师(P1)带来了额外的培训和评估其他咨询师的专业知识,提供了关于实践和专业发展的宝贵见解。
在形成性研究中,我们首先解释了我们的研究目标:分解人类咨询师的工作程序,并了解他们如何在咨询过程中吸引客户。我们强调,这种理解对于开发更以证据为基础的治疗AI代理框架至关重要。参与者随后参与了半结构化访谈,在访谈中详细描述了他们的治疗方法、决策过程和专业实践。每次访谈大约持续60分钟。半结构化访谈的主持人指南可以在附录 9 中找到。
完成所有访谈后,我们将音频记录逐字转录。分析过程遵循系统编码方法:首先,一名研究人员对转录内容进行初步编码,识别治疗程序和决策过程中的重复模式。另一名研究人员随后独立编码并审查第一位研究人员的发现。最后,第三名研究人员加入讨论并解决前两位研究人员之间的编码分歧。
我们的分析主要集中在CBT和心理动力学方法,这些方法在中国治疗背景下占主导地位,不过识别出的认知模式和操作程序可能适用于其他治疗方法,因为它们反映了治疗互动和决策的基本方面。通过这个严格的分析过程,我们确定了咨询师标准操作程序中的几个关键组成部分,我们在下一节中详细说明。
3.1.2 理解治疗程序
我们对咨询师标准操作程序的分析揭示了一个分层的认知过程和操作程序结构,分为三个相互关联的层次,无缝地将高层规划与时刻调整结合起来。这些层次反映了咨询师如何从总体治疗阶段到时刻互动组织他们的治疗工作,创建了一个递归的规划系统,既结构化又适应性强。
(1) 目标层:总体治疗阶段
- 初始评估阶段(通常持续1-2次会话): 治疗之旅始于仔细的评估阶段,咨询师在此基础上建立治疗的基础。正如P1解释的: “初始阶段对于构建我们的案例概念化至关重要。虽然数字工具帮助我们高效收集基本信息,但我们利用面对面的会话来深化对客户叙事的理解并制定全面的临床方案。” 在这些初始会话中,咨询师专注于三个关键目标:验证和扩展预先收集的信息,建立协作的治疗关系,并与客户一起定义具体的治疗目标。
- 中间阶段(通常8-40+次会话): 中间阶段构成了大部分治疗工作。此阶段的重点在于实施核心治疗干预措施,发展客户的应对技能,处理挑战性情绪,并跟踪朝向已设定目标的进展。咨询师定期回顾治疗计划,并根据客户的回应和不断变化的需求调整策略。
- 终止阶段(2-3次会话): 当治疗目标大体达成时,终止阶段开始。正如P2解释的: “终止是为了巩固收益并确保客户具备独立性。” 此阶段强调庆祝进步和加强客户对自己治疗成果的信心。
咨询师持续评估客户的进展,并可能根据新问题的出现调整甚至重新审视早期治疗阶段。正如P3指出的: “有时看似简单的案例在中间阶段揭示了更深的问题,需要我们暂时退回到额外的评估然后再继续前进。”
(2) 会话层:会话特定议程规划
在每个治疗阶段内,咨询师制定详细的会话议程,服务于当前阶段的具体目的。正如P2指出的: “我们遵循计划的议程,同时对可能出现的、能提供更深治疗价值的主题保持响应。” 每个会话通常遵循一个旨在优化治疗进展的结构化格式: - 简短的签到和议程设置(5-10分钟)
- 主要治疗工作(30-35分钟),重点深入探索和干预
- 进展回顾和作业规划(5-10分钟)
- 简短的总结(5分钟),综合关键见解
咨询师定期评估其会话议程的有效性,并在必要时进行递归调整。P3描述道: “尽管我们每次会话都有明确的议程,但当客户需求或出现的新见解建议不同的方向更有益时,我们必须保持灵活。这些调整仍需服务于总体阶段目标。”
(3) 行动序列层:时刻治疗响应
在每个会话议程项目内,咨询师通过一个复杂的递归过程执行特定的治疗行动。正如P2描述的: “我不断地整合来自多种来源的信息,包括客户现在的说话内容、它如何连接到我们之前的讨论、他们的非言语提示和我们的总体治疗目标。”
这个行动序列过程包括: - 感知客户信息: 从言语内容、非言语线索和历史背景中收集全面信息。
- 策略性响应选择: 选择实现当前议程项目的具体治疗技术。P3指出: “这关乎选择最合适的干预措施,无论是深化探索、提供认可还是引入新视角。”
- 治疗交付: 以适当的时间和措辞执行选定的响应。
- 反思性整合: 根据当前议程项目和治疗方向评估这些信息。
当客户回应表明当前行动序列无效时,咨询师立即调整其方法。正如P3强调的: “有效性往往在于我们如何传递回应,时间点、措辞,甚至知道何时沉默是最具治疗意义的。”
这三个层次以持续的双向关系运作。治疗阶段(目标层)决定了适当的会话议程(会话层),后者指导具体的治疗行动(行动序列层),从而确保治疗既连贯又能响应客户不断变化的需求。同时,行动序列层的观察和客户回应可能触发会话层的调整,有时甚至需要对目标层进行必要的更改。正如P1总结的: “有效治疗需要结构和适应性。我们需要清晰的方向,同时对治疗过程中出现的情况保持响应。” 这个分层、递归的规划系统使咨询师能够在适应客户不断变化的需求的同时保持治疗连贯性,创造结构化进展与响应灵活性之间的平衡,这对于有效的咨询至关重要。
3.1.3 治疗性自我披露和个性化共情参与
本小节探讨咨询师如何通过战略性自我披露和个性化共情参与建立真实的治疗关系。
治疗情境中的战略性自我披露: 我们的访谈显示,咨询师战略性地使用自我披露来与客户建立真实且富有同理心的联系。正如P3描述的: “有些时候仅仅作为一个专业人士是不够的,客户需要知道你是一个理解他们的人。我可能会分享一个简短的个人经历,不是为了把焦点放在我身上,而是为了传达‘我对这些领域不仅从书本上了解’。” 这种谨慎的自我披露有助于使客户的体验正常化,同时保持适当的界限。
共情回应的时机和个性化: 咨询师强调了共情参与中时机和个性化的重要性。P4解释说: “一些客户期待立即的解决方案,但往往他们真正首先需要的是感到完全被看见。我会为这种情感连接创造空间,然后再转向行动步骤。” 此外,咨询师根据客户的偏好和背景发展个性化的共情方法。P8指出: “不同客户对真诚共情的理解各不相同。发现每个人独特的‘共情语言’对于治疗效果至关重要。”
3.1.4 专业咨询中的客户文档实践
我们的调查揭示,人类咨询师通常维持三种关键类型的文档,这些文档构成了有效案例管理和治疗进展的基础: - 会话记录: 这些是每个咨询会话的详细账目,记录客户的陈述、情绪反应、所应用的干预措施和显著的发展 (美国心理学会等. 2007) 。咨询师按时间顺序维护这些记录,通常包括一个突出关键见解和进展标记的总结部分。这些记录既作为法律文件,也作为跟踪治疗进展随时间变化的参考材料。
- 会话议程: 咨询师根据之前的互动和客户需求制定结构化的后续会话计划。这些议程概述了治疗目标、要实施的具体技术、要探索的主题以及可能需要解决的挑战 (贝克 2020) 。 议程是动态文件,基于会话记录和案例概念化不断演变,确保治疗连续性的同时适应出现的客户需求。
- 案例概念化: 或许是咨询师实践中最重要的认知工具,案例概念化是全面的理论框架,将客户信息组织成连贯的解释模型。这些动态文件整合了客户历史、呈现的问题、潜在的心理机制、优势、挑战和治疗方向 (斯佩里和斯佩里 2020) 。一个完善的案例概念化指导干预选择,帮助预测客户反应,并为治疗决策提供理论基础。
这三种文档实践之间的相互关系创建了一个支持治疗推理的认知框架。会话记录为案例概念化提供了依据,反过来又塑造了会话议程,从而形成了一个持续反馈循环,实现了响应性和个性化的治疗进展。
3.2 AI咨询方法的形成性审查
随着LLMs的迅速发展,AI咨询师以多种形式出现——从基于文本的对话代理到虚拟治疗助手——涵盖了心理健康领域。为了设计更有效的AI咨询框架,系统分析当前AI咨询系统的互动模式和技术实现至关重要。通过剖析现有AI咨询师的优势和局限,同时结合人类咨询实践的关键见解,我们可以为设计基于LLM的心理健康咨询系统奠定理论基础。
3.2.1 审查方法
我们使用了系统评价和荟萃分析报告首选项(PRISMA) (Page et al. 2021) 对研究论文进行调查。基于分层研究问题进行了两次连续搜索和分析。图 1 提供了我们的搜索过程及相关搜索结果的概览。
PRISMA流程图说明文献选择过程。
搜索和自动过滤:
- 数据库: 我们的数据库搜索是在2024年4月至5月之间进行的。尽管最初考虑了四个数据库——ACM数字图书馆、ScienceDirect (Elsevier)、PsycInfo 和 Scopus——最终的搜索结果主要来源于Scopus、ACM数字图书馆和APA PsycInfo。
- 搜索范围和字符串: 我们构建了以下搜索查询: (“wellbeing" OR “health" OR“medical" OR “mental" OR “psychological" OR “counseling" OR “therapy" OR“consulting" ) AND ( “AI Agent" OR “conversational agent" OR“chatbot") 。
- 我们将搜索结果限制在知名期刊和会议论文集中的文章和会议论文,并排除所有非英文出版物。总共从这些查询中获得了2963条条目:2600条来自Scopus,188条来自ACM数字图书馆,175条来自APA PsycInfo。
- 我们将结果导出到表格中,标准化包含出版细节的列,消除重复项,并删除不符合我们正式标准的文章(例如工作坊论文)。我们的初始语料库最终包含2641篇文章。
人工筛选:
我们通过三步法对所有搜索结果进行了筛选:
- 标题筛选: 在初步筛选阶段,一位研究人员评估了每篇文章的标题,并根据其与主题的一致性区分相关和无关的文章。如果标题包含与对话代理和幸福感相关的术语,则被视为相关。总共213篇标题相关的文章进入进一步筛选。
- 摘要筛选: 一名研究人员仔细检查并分析文章摘要以确定其与主题领域的相关性。另一位研究人员重新评估经过筛选的文章。摘要审查去除了129篇文章,剩下84篇适合全文筛选的文章。
- 全文筛选: 两名研究人员对剩余文章进行了彻底检查,根据研究人员指定的纳入和排除标准决定最终包含哪些文章。我们保留了56篇文章。
- 满足以下任何一项排除标准的研究被移除:
- 文章未经过同行评审,意味着它没有经过该领域专家的评估。
- 文章要么是摘要,要么是扩展摘要,仅提供研究的简洁总结。
- 文章基于二手研究,如综述文章。
质量评估:
然后,我们使用批判性评估工具对语料库中剩余文章的质量进行了评估。这些工具通过在线提供的免费清单和电子表格提供对每项研究质量的分析评估 (Crombie 2022; Katrak et al. 2004) 。两位研究人员分别评估了每篇出版物。文章质量经过深入讨论,直到达成共识,解决了任何分歧。在56篇全文筛选的文章中,1篇被我们的批判性评估工具分类为“差”,因此被排除。最终,共有55篇文章被选入我们的评论中。在完成纳入和排除标准程序后,共有55篇文章被选入我们的研究。
数据提取和分析:
使用主题分析 (Clarke and Braun 2017) ,我们开发了一套明确的标准,定义了我们需要从论文中收集的具体数据。之后,我们对43篇论文进行了初步检查,以确定这些标准是否合理以及数据是否可以真正提取。在整个过程中,经过三位研究人员多次讨论,这些标准逐渐完善。在第2.2节中,我们提供了它们形状的最终版本及其相关结果。
3.2.2 发现
我们的文献回顾表明,当前关于AI咨询系统的研究表明,在几个关键治疗领域存在局限性。研究人员指出了案例概念化方面的缺陷 (Oh et al. 2017) 、代理角色设计 (Lee, Lee, and Lee 2024) 和治疗规划能力 (Rathnayaka et al. 2022; Denecke, Vaaheesan, and Arulnathan 2020) 的不足之处。其他工作还关注于治疗技术实施、心理教育传递和同理心理解的局限性。文献还讨论了创造充实体验、个性化、保护用户自主权、建立治疗联盟和保持透明度的挑战。以下章节更详细地考察了这些已识别的局限性,揭示了必须解决的基本差距,以推进AI咨询能力。
认知处理和规划的局限性: 早期的自动化心理健康系统展示了显著的认知处理局限性,阻碍了其治疗效果。基于决策树算法 (Quinlan 1986; Yasavur, Lisetti, and Rishe 2014; Shah et al. 2022) 或脚本对话 (Bickmore, Pfeifer, and Jack 2009; Bickmore, Puskar, et al. 2010; Fitzpatrick, Darcy, and Vierhile 2017; Fadhil, Wang, and Reiterer 2019; Chung and Park 2019) 构建的系统本质上在僵化的预设互动路径内运行 (Gardner, Kelleher, and Pajer 2002) 。这些约束从根本上限制了他们在有效咨询所需的适应性认知处理方面的能力。
即使在语言模型能力方面取得了最新进展,当前基于LLM的咨询应用程序仍显示出关键的规划缺陷。虽然这些系统可以通过各种技术成功模仿咨询师的沟通风格并检索相关的专业知识,包括微调 (Jo et al. 2024b; Xu et al. 2024) 、检索增强生成(RAG) (Hu et al. 2024; Li et al. 2023) 和提示工程 (Singh et al. 2024) ,但它们主要作为复杂的响应生成器而非能够进行治疗规划的认知代理运作。
我们的分析显示,这些系统通常单独处理对话轮次,缺乏在互动中保持连贯治疗进展的能力 (Abd-Alrazaq et al. 2019) 。这种方法与人类咨询师集成的认知过程形成鲜明对比,后者能够无缝协调会话级别的治疗目标和基于客户不断变化需求的时刻干预。这种认知处理和规划能力的基本局限性代表了在开发更有效的AI咨询系统时必须解决的关键差距。
客户评估和画像的局限性: 传统的自动化心理健康系统通常依赖静态问卷或预定的评估路径 (Quinlan 1986; Yasavur, Lisetti, and Rishe 2014; Shah et al. 2022; Bickmore, Pfeifer, and Jack 2009; Bickmore, Puskar, et al. 2010; Bickmore, Schulman, and Sidner 2013; Fitzpatrick, Darcy, and Vierhile 2017; Fadhil, Wang, and Reiterer 2019; Chung and Park 2019; Hauser-Ulrich et al. 2020; Battineni, Chintalapudi, and Amenta 2020) 。即使在最近的LLM技术进步之后,大多数系统仍然缺乏有效人类咨询实践中所体现的持续迭代的客户理解能力 (Hu et al. 2024; Jo et al. 2024a) 。这些方法通常在特定点通过固定协议收集客户信息,未能捕捉客户心理状态和整个治疗过程中不断变化的需求的动态性质。
治疗知识利用的局限性: 尽管知识库检索在咨询应用中很常见 (Hu et al. 2024; Li et al. 2023; Jo et al. 2024b) ,但当前方法缺乏系统化的组织和操作具体性。现有的系统通常采用原始信息检索,而无需将其转化为可行的治疗干预措施。这在信息访问和治疗执行之间造成了显著的实施差距 (Luxton 2014) 。大多数当前系统检索并呈现相关信息,但未能以方式结构化这些知识,使其能够在适当的情境下进行治疗干预。这种局限性损害了AI咨询系统在应对客户动态需求时有效应用治疗技术的能力。
AI咨询系统中的治疗关系建立: AI为基础的咨询研究在开发能够表达同理心和建立治疗联盟的系统方面取得了显著进展。包含同理心表达 (Casas et al. 2021) 和积极关注 (Rogers 1957) 的系统显示出改善的客户参与度。Fitzpatrick等人 (Fitzpatrick, Darcy, and Vierhile 2017) 展示了平衡治疗存在感与技术透明性的方法取得的有希望的结果。然而,这些实现通常针对治疗关系的具体组成部分,而不是提供一个全面的框架来创建真实的AI治疗形象。在此基础上,需要一个综合的方法来建立治疗关系,以补充AI咨询系统的认知和知识处理方面。
3.3 形成性研究的设计考虑因素
尽管承认基于LLM的咨询系统还需要强大的安全协议、严格的数据保护和全面的伦理指南,这是本文范围之外的内容,这项工作专注于设计有效模拟治疗互动的AI咨询代理。安全问题、法规遵从性和全面的风险缓解策略值得在后续研究中进一步探讨。我们的形成性研究产生了五个相互关联的设计考虑因素:
DC1定义了支撑和指导治疗过程的认知架构。DC2解决了持续心理评估的需求——确保动态客户状态引导适当的目标设定,而DC3提供了强大的知识基础设施,组织和传递有效治疗干预所需的信息。DC4和DC5解决了AI咨询的互补方面:DC4专注于设计具备真诚共情和有效关系建立能力的治疗角色,而DC5则利用AI的计算优势,提供强大的知识支持并促进心理教育。这些考虑因素共同构成一个框架,用于创建在真实治疗关系与技术能力之间取得平衡的AI咨询代理。
3.3.1 DC1: 治疗过程的认知构架
基于我们对当前AI系统中存在的认知规划局限性的分析(第 [Sec:review_DC1] 节),我们从对人类咨询师治疗过程方法的调查中得出这一设计考虑因素。我们对咨询师标准操作程序的分析(第 3.1.2 节) 显示,有效的治疗实践需要一个具有递归更新机制的分层目标导向规划框架。
这个规划框架的基础始于系统的设定目标。基于全面的客户档案,咨询师开发出将理解转化为行动计划的结构化干预策略。我们的观察表明,这种规划在三个相互关联的层次中展开:
- 在 目标层 ,咨询师设定跨越多个会话的总体治疗目标。这些高层次的目标定义了从初始评估到终止的完整治疗旅程。如第 3.1.2 节所述,当检测到客户行为的持续变化或显著的治疗转变时,这些目标可以递归更新。
- 在 会话层 ,咨询师根据更高层次的治疗目标制定具体的会话议程。每次会话都有意地计划以服务于更广泛的治疗进展中的特定目的。当中积累的反馈表明与预期进展有显著偏差时,这个中间规划层会递归调整。
- 在 行动序列层 ,咨询师在个别会话中规划他们的时刻治疗响应。正如P2描述的那样: “我不断地整合多条信息流 - 客户现在所说的话、它如何与我们之前的讨论相联系、他们的非言语线索以及我们的总体治疗目标。” 这一层涉及持续评估和战略响应生成,当客户消息指示需要策略转变时,会立即递归调整。
这些规划层通过双向机制运作:自上而下的内容生成,其中高层指导低层,以及自下而上的反馈传播,其中客户响应触发适当层级的递归调整。这种双向方法允许结构化但可适应的治疗进展,使AI咨询师能够在保持总体治疗目标的同时灵活响应新兴的客户需求。
在这个过程中至关重要的是一体化的系统反思。我们对咨询师和监督者的访谈强调,有效的治疗实践需要对当前和历史互动进行持续的元认知评估。正如P5所指出的: “定期反思我的治疗选择帮助我识别否则可能忽略的模式,并告知我未来类似情况下的处理方式。” 这种反思维度使咨询师能够批判性地检查自己的推理,识别潜在的偏见或无效方法,并根据累积的经验不断改进其治疗策略。对于AI咨询系统而言,融入这种反思能力对于超越简单的响应生成,迈向通过经验逐步发展的更复杂的治疗推理至关重要。
3.3.2 DC2: 主动和持续的客户心理画像
正如我们在对咨询师实践的分析中所揭示的(Sec 3.1.2 ),客户评估是整个治疗旅程中持续和主动的过程。 虽然初始画像从会前问卷和早期互动开始,咨询师在每次治疗过程中积极加深对客户情况的理解。
为了解决这些局限性(如第 [sec:review_dc2] 节所示)并推动在整个咨询干预过程中对客户理解的持续深化,我们的设计考虑强调了系统心理画像的两个关键方面: - 主动理解: 系统不应被动接收信息,而应主动探索和验证客户情况的各个方面。正如咨询师实践中所证明的,持续评估涉及对新兴主题的刻意探索和对发展中的洞察力的积极验证。这种动态理解过程确保治疗干预能够响应客户不断变化的需求。
- 渐进细化: 客户画像应随着新见解的出现而持续更新。这涉及到维护一种动态的心理表征,将即时关切与不断演变的治疗需求结合起来。定期细化客户理解有助于更精确的干预选择,并确保治疗与客户不断变化的情况保持一致。
3.3.3 DC3: 可操作的知识库以支持代理干预
为了弥合已识别的差距,即治疗知识虽可获取但未能有效转化为实际干预,我们提出了一个设计考虑,重点是将治疗知识转化为可操作的干预: - 知识预处理: 有效治疗干预的基础在于对治疗知识的系统化处理和结构化,包括提取、分类和标准化治疗内容。原始治疗材料必须通过提取、分类和标准化为精细的操作格式进行系统转换,以支持实时干预。这包括提取具体的干预程序和技术,将其结构化为带有情境标签的细粒度组件,并组织信息以支持互动期间的快速检索。这种预处理确保治疗知识不仅仅是存储,而是为咨询场景做好操作准备。
- 情境感知检索: 系统必须智能判断何时及检索何种知识,基于治疗情境。这需要将各种对话状态(包括情感基调和语义提示)与相应的知识需求进行复杂映射,从而使系统能够识别合适的干预时机。检索机制必须将选定的知识组件与当前治疗目标和对话动态对齐。正如P4所提到的: “把握干预的恰当时刻与干预本身同样重要。”
- 知识的适应性应用: 检索到的知识必须精心适配以满足个体客户的需求。这最后一步涉及整合客户档案和会话历史,以适当地定制干预措施。系统必须根据参与水平和情感稳定性等指标评估客户准备情况,并相应调整干预强度,同时始终维护治疗联盟。正如P7所描述的: “每种治疗技术都需要仔细适应,对一个客户有效的技术可能需要对另一个客户进行重大修改。” 这种适应性应用确保治疗知识转化为个性化、情境适宜的干预。
3.3.4 DC4: 真实共情的治疗角色设计
与通过细腻的主观性和丰富的生活经历来建立治疗关系的人类咨询师不同(详见第 3.1.3 节),AI代理缺乏促进真实连接的基本人性品质。为了弥补这一差距,我们专注于设计类似人类的治疗互动,以促进真正的治疗关系。我们的设计受到文献综述中关键发现的启发,突显了同理心和自我披露在有效治疗互动中的关键作用。 - 可信的存在: 系统必须建立一个一致且可信的治疗角色,展现专业性和同理心,同时对其AI本质保持透明。这要求开诚布公地说明其技术身份,同时培养一个明确表现出关键专业品质(如同理心、可靠性和职业道德)的治疗角色 (Horvath and Luborsky 1993) 。这包括通过一贯的行为和清楚传达其能力和限制来建立信任。
- 共情回应: 除了基本的治疗存在感,系统必须发展出真实表达共情和理解的方式 (Casas et al. 2021; Adikari et al. 2022; Lee, Lee, and Lee 2024) 。这不仅仅模仿人类行为,而是设计响应模式,真诚地认可客户情感,同时尊重AI能力的边界。重点应该是开发适合AI的方式来传达理解和支持。
- 联盟建设: 系统必须通过情感一致性与无条件的积极关注在互动中持续建立治疗联盟 (Rogers 1957) 。这需要根据客户反馈调整互动风格以满足个体客户需求,例如根据客户的参与水平和情感稳定性调整沟通语气和时机。最终目标是培养一种可持续的治疗关系,其中界面透明地整合人类般的共情与AI的独特能力和限制,从而促进长期的客户信任和参与。
3.3.5 DC5: 满足对AI代理的刻板期望
虽然AI咨询代理努力模仿人类特质,如同理心和角色发展,它们还必须主动应对客户对与人工智能互动的固有先入之见,例如期望高度分析的信息和次要服务角色。客户带着与非人类实体互动的基本意识接近AI咨询师,创造了与人类治疗关系不同的期望模式。这些不同的期望体现在以下几个关键维度: - 信息性和分析性: 与人类咨询师相比,客户期望AI咨询师提供更具体的信息和基于证据的建议 (Fitzpatrick, Darcy, and Vierhile 2017) 。
- 次要角色定位: 研究表明,用户认为AI系统主要是服务提供者而非平等参与者。这影响了互动模式,用户在与AI代理互动时表现出更为直接的沟通风格 (Pradhan, Findlater, and Lazar 2019) 。
- 减少社会负担: 研究显示,用户报告对“打扰”AI系统的担忧显著少于对人类咨询师的担忧 (Miner et al. 2016) 。
- 加速亲密关系发展: 观察显示,用户在与AI系统互动时更快地绕过正常的社交距离障碍,常常在最初的几次互动中分享敏感信息 (Ho, Hancock, and Miner 2018) 。
- 降低隐私顾虑: 研究确认用户在与AI系统分享个人信息时感到更加舒适,因为减少了对人类评判的恐惧 (Ly, Ly, and Andersson 2017) 。
这些发现表明,有效的AI咨询系统不仅需要模仿人类咨询师,还要适应和利用这些AI特有的期望。正如Bickmore等人 (Bickmore, Mitchell, et al. 2010) 所主张的,承认和适应非人类状态可能不会削弱反而能增强AI咨询环境中的治疗有效性。
4 CA+代理框架
本节介绍CA+框架,这是一个创新的基于LLM的心理咨询框架。在第一部分(第 4.1 节),我们将探讨CA+框架的主要组件。本节的第二部分(第 4.2 至第 4.6 节)重点关注框架设计目标的实用实现。这里我们将详细说明五种具体方法。通过与参与者反馈和专业监督的迭代精炼(第 4.7 节), 我们开发了一个系统,解决了AI辅助咨询的技术挑战和交互要求。
4.1 框架架构和模块设计
所提出的框架引入了一种新颖的基于LLM的心理咨询方法,通过动态构造一个递归、自我演化的决策图来导航复杂的解决问题场景。如图 [fig:teaser] 所示,我们的系统利用治疗知识和专业的咨询模式,通过两个主要模块——治疗策略模块和沟通形式模块——实施这个动态决策过程,同时通过集成的信息管理和存储组件支持实时操作。核心创新在于系统的递归决策过程,通过基于实时客户反馈和不断变化的情境线索调整其治疗策略,持续优化咨询解决方案。 - 治疗策略模块: 治疗策略模块通过一个分层的三层结构运作,包括目标层、会话层和行动序列层,基于用户反馈实施双向规划机制。当接收到客户消息和历史情境时,系统首先评估反馈以确定规划方向。正面反馈触发向前规划,维持当前治疗轨迹同时生成新的动作。相反,负面反馈启动向后调整过程,系统收集反馈,更新会话议程,并重新生成动作序列。这种适应机制确保治疗连贯性,同时根据实时客户反馈动态调整策略。
- 沟通形式模块: 沟通形式模块通过整合指导和共情策略来协调策略驱动的沟通适应。基于客户画像和偏好的持续分析,系统维护两条平行的战略路径:一条指导治疗进展,另一条管理情感参与。这些策略在响应生成组件中汇聚,综合考虑客户情感和接受水平来合成适当的响应。这种双策略方法确保客户互动中的治疗效果和情感共鸣。
- 信息管理和存储: 框架的信息架构围绕两个主要数据库协同工作。客户数据库维护全面记录,包括咨询历史、会话议程、动作序列和详细的客户画像,支持实时读写操作并促进动态决策。知识数据库通过我们设计的机制整合专业治疗知识,将认证的咨询文献和资料转化为结构化的数据对。这些知识对被系统地存储,以便在咨询会话期间高效检索。
4.2 DC1: 认知增强的分层思考
考虑一个心理咨询场景,客户最初提出“工作压力”,但在互动中揭示了更深的工作生活平衡、职业发展焦虑和家庭期望问题。我们的框架多层递归架构使系统能够动态导航这些复杂、相互关联的问题。当客户表达即时工作压力时,系统可以针对具体应对策略作出回应,同时更新其对潜在问题的理解并调整更长期的治疗目标——这与经验丰富的咨询师既处理即时问题又发展更深治疗见解的方式非常相似。
.1" id="recursive-layer-architecture"> 4.2.1 递归层架构
系统通过一个三层架构实现规则定义的节点生成和条件更新。每一层维持其计划内容(如图 2 所示),直到特定条件触发递归更新:
CA+ 系统中三层内容的例子。
- 目标层: 建立跨越多个会话的总体治疗目标。只有当持续反馈检测到持续模式变化或显著的治疗转变时,这一层才会触发递归更新。否则,原始治疗目标仍然有效。
- 会话层: 从父级目标节点推导出会话计划。当累积反馈表明与预期进展有显著偏差时(评估间隔大致对应于0.3到1个会话之间),该层递归调整其规划。否则,它遵循预先建立的会话议程。
4.2.2 双向规划机制
系统通过客户反馈评估实施由算法 [alg:1] 形式化的双向规划过程。这种机制通过以下方式运作:
- 自下而上的调整: 当客户反馈表明策略无效(负面态度在反馈评估中被检测到)时,系统通过递归函数调用将调整向上传播——从行动序列到会话议程,必要时再到治疗目标。
4.3 DC2: 概念驱动的隐式客户画像
基于DC1中建立的分层规划框架,我们的第二个设计考虑因素探讨了AI咨询系统如何在不中断自然治疗对话的情况下开发和维护全面的客户理解。虽然DC1提供了治疗规划的认知结构,但DC2专注于为这些计划提供依据的知识表示。
CA+系统通过自然治疗互动实现了隐式客户画像机制的自动化构建和维护。这个设计组件利用专业文档实践来指导咨询过程,同时不断更新客户档案。
4.3.1 专业文档框架
系统通过两个相互关联的文档类型全面捕捉客户信息和治疗进展,如图 3 所示:
CA+ 系统中的案例概念化和咨询记录文档示例。
案例概念化: 系统初始化了一个结构化模板,涵盖了关键的临床评估字段,例如人口统计信息、呈现的问题、家庭动态和临床假设。这种方法确保在干预之前全面了解客户。
咨询记录: 系统采用双级文档记录咨询记录。首先,它维护每个会话的具体记录,以捕获粒度治疗互动。其次,它编制累积进度摘要,综合整体治疗轨迹。
4.3.2 文档驱动管理机制
- 初始阶段: 专注于建立联盟和全面评估。此阶段在案例概念化尚未满足预设完整性标准时激活,从而自然地将互动引向系统的信息收集,通过有意记录出现的客户细节。
- 中间阶段: 允许更深入的探索和主动干预实施。系统在客户档案达到预定的完整性水平时过渡到此阶段,表明关键数据点可用,从而允许应用针对性的治疗技术。
- 结束阶段: 巩固治疗收益并准备终止。系统通过联合分析档案完整性和记录的进展来确定这种过渡。
这种循环机制确保治疗进展与文档完整性一致,使系统能够适应客户需求,同时保持专业标准。重要的是,它补充了DC1的分层规划,提供了不断演变的知识库,以指导所有三个规划层的目标设定和策略选择。附录 10.2 包含完整的文档。
4.4 DC3: 书式数据生成和检索
书式数据生成和检索。 此框架说明了生成和检索用于治疗用途的结构化数据的过程,利用知识库增强咨询干预。
CA+框架通过智能提取和情境感知检索过程,将专业咨询文献转化为可操作的知识,围绕一个结构化的知识库(图. 4 )。
知识提炼过程: 我们的系统处理了所有受访咨询师广泛推荐的权威中文咨询教材,涵盖了常见的治疗方法,包括认知行为疗法(CBT)。这些资源代表了中国心理实践的专业标准,是我们知识提取的基础。
我们通过以下方法将全面的咨询文本转化为精确、适用的指导:(1) 系统章节组织保留源层次结构,(2) 功能标记进行实际分类,(3) 提取关键指令-示例对展示主要治疗技术,(4) 全面元数据注释促进目标检索。知识库存储这些提炼出的见解,带有丰富的上下文标记,包括实际指令、示例对话和多维治疗分类标签。
这种双向框架确保LLM响应结合了定制的专业治疗原则,以满足特定客户需求和对话动态。详细的实现描述见附录 10.3 。
4.5 DC4: 自适应共情和生态自我
DG4方法通过两种关键机制增强了治疗互动:自适应共情,平衡即时响应与一贯的治疗角色;以及生态自我框架,将专业能力与个性化特征相结合,如图 7 所示。更多信息详见附录 10.4 。
自适应共情和个人化机制: 系统通过两个核心LLM组件实现双重时间适应(图 5 ):
生态自我: 作为我们框架的一个示范,我们选择了理性情绪行为疗法的创始人阿尔伯特·埃利斯作为治疗角色。生态自我设计通过两个关键组件建立了他的治疗角色(图 6 ):
- 专业基础: 基础提示定义了核心治疗能力,包括理性情绪行为疗法原则、伦理准则和标准干预协议,确保一致的治疗传递。
- 互动风格: 在此基础上,附加提示启用符合埃利斯治疗方法的特征表达,按照他的方法进行情境干预,并在保持专业标准的同时进行文化敏感的响应。
该框架使代理能够在系统提示工程的支持下,维持阿尔伯特·埃利斯的治疗方法,同时提供个性化和情感共鸣的支持。
4.6 DC5: 适应AI特定的客户需求
尽管AI咨询代理努力模仿人类治疗品质,它们还必须同时应对客户对人工智能交互的固有先入之见。这个设计组件提供了如何制作提示(有关详情,请参见图 8 )以符合这些独特期望的指导。
信息导向: 强调在提示中提供具体信息和基于证据的建议,以符合客户的期望。设计系统响应以提供比典型的人类咨询更详细的信息,满足用户对AI交互的分析期望。
从属角色定位: 利用语言将AI定位为有用且服务导向的,承认层级关系客户自然建立。采用强化适当谦逊同时保持治疗价值的沟通模式,允许客户参与他们偏好的直接沟通风格。
社会负担减轻: 明确承认并利用客户对“打扰”AI系统的减少关注。设计提示以最小化治疗交流中的感知社会约束,为客户表达需求和担忧创造空间,避免在人与人之间的治疗关系中常见的犹豫。
亲密和隐私: 账户客户在与AI系统互动时加速亲密发展的倾向,以及绕过正常社交距离障碍的趋势。融入对早期敏感披露的适当响应,同时保持专业界限,认识到客户通常由于减少了对人类判断的恐惧而更愿意分享个人信息。
DC5提示示例。
这种方法利用了客户对AI特定的期望,而不是对抗它们。正如研究建议的那样,承认非人类状态可能会增强而非削弱AI辅导环境中的治疗效果。
4.7 系统实现和改进
我们的开发过程强调通过参与者反馈和专业监督进行持续改进和安全性,解决关键技术及互动挑战,然后进行更大规模的评估。
技术实现细节: 我们的系统使用标准的Web堆栈构建。后端使用Django(Python Web框架)开发,前端使用Vue.js创建用户界面。我们选择这种组合是因为它在Web应用程序开发中的简单性和有效性。
我们系统的功能核心依赖于OpenAI提供的GPT-4o API(版本2024-08-06),支持对话型AI功能。我们集成了Langchain以更有效地管理和结构化对话。我们的主要提示可以在附录 10 中找到。对于数据存储,我们使用MySQL数据库。这存储了客户信息、对话日志和其他系统运行所需的必要数据。
我们使用Albert Ellis(理性情绪行为疗法的创始人)的角色初始化了CA+框架。该系统部署在服务器上,允许研究参与者通过网络浏览器访问,如附录 11 所示。
这个初步实验是在持证咨询师和研究团队成员的直接监督下进行的,他们实时监控所有互动。我们采用了迭代测试方法,将参与者分为六个连续批次,每批三人。每批完成三天的咨询会话后,我们的团队对互动进行了全面审查,发现问题并实施系统改进,然后进入下一组参与者。
在早期迭代中,我们发现了几例事实差异(大约占第一批次响应的2.7%),主要与特定的治疗技术和干预效果的统计数据有关。为了解决这些问题,我们逐步实施了三项关键改进:(1)增强知识检索组件,使用经过验证的治疗资源,(2)对统计数据声明实施更严格的护栏,(3)在讨论没有强有力证据支持的干预效果时添加明确的不确定性表达。
在最后一组参与者中,我们的系统性改进将事实差异减少到了可忽略的水平(不到0.2%的响应),在整个27次完整咨询会话中未发现任何有害的治疗建议。这种逐步减少幻觉展示了我们在系统开发和安全保障方面迭代方法的有效性。
通过访谈和后台数据分析,我们发现了另外两个关键改进领域。首先,客户对长时间会话表现出不耐烦,表明在线咨询需要比传统面对面会话更为简洁的方法。对此,我们缩短了整体咨询议程,模块化了会话,并简化了后续提问和澄清的过程。这一调整旨在维持客户参与,并创建更短的反馈循环。
行为趋势(图 13 ),加上统计分析,突显了CA+系统相对于基线系统在三个关键行为指标方面的优势: 轮次 、 信息量 和 会话长度 。CA+系统在三天内持续优于基线系统,并显示出持续改进,突显了其提升客户参与度的有效性。
行为趋势 在CA+和基线组中。本图说明了CA+和基线组在三天内的轮次、信息量和会话长度的比较分析,突出两组之间的关键行为差异。
行为分析确认,CA+客户表现出更高的参与水平,并提供更广泛的信息,从而支持更深入的心理干预。
5.4.4 系统功能反馈
客户对CA+系统的反馈显示,在参与度、个性化和治疗效果方面较基线系统有了显著改进(图 14 )。定量和定性分析展示了CA+在保持对话连贯性和提供同理心、个性化干预方面的卓越表现:
箱形图比较CA+和基线组在 系统功能 方面的表现。CA+组在所有维度上的评分均显著高于基线组。
- 一位参与者(CA-6)详细阐述了这种改进的理解,说:“它会根据我遇到的不同事件分析我的情况,而不是简单地重复几句相同的话。此外,在询问其他问题后,它会修改其先前的方法并相应地回应我。所以我认为这也展示了 AI系统的思考能力。 " 这一反馈突出了CA+的自适应推理方法,这很可能促使其在多轮理解和推理方面获得了显著更高的评分。
- 这些定量发现得到了客户证词的支持。一位参与者(CA-3)强调了CA+的个性化方法: “当我表达我的不满和悲伤时,它总是会安慰我。我感到每个安慰的话语都非常用心,让我觉得它真的关心我。”此外,CA-13进一步表示,CA+会根据之前的对话给出深思熟虑的回应。
- 实用建议: CA+因其 提供实用且量身定制的建议 而受到称赞。客户欣赏它在他们感到迷茫时提供的指导,正如CA-3所例示的:“我寻求它的帮助是因为我不知道如何制定计划,所以我希望它能给我一些计划。然后我发现 它确实给了我很多有效的建议,而且我也在现实生活中尝试了这些方法。 ” CA+还根据客户的兴趣提出基于证据的技术,例如专注于冥想训练(CA-11)。此外,它结合理论理解与实践任务的结构化方法解决问题是备受重视的。CA-12提到:“例如,当我们需要设定一些日常任务或目标时,它会首先提供关于感知和接受情绪的理论,然后开始设定具体任务。 这让我觉得扎根于那个理论框架。 ” 这些功能共同展示了CA+在提供全面和教育性的咨询支持方面的有效性。
6 研究2:认证咨询师质量评估
6.1 方法论
参与者: 本研究招募了两名持证咨询师(LC-1 和 LC-2),他们拥有丰富的经验(超过500小时的咨询经验和超过5年的从业经历),并至少拥有临床心理学硕士学位。
程序: 咨询师审查了来自研究1的6份逐字聊天记录,其中3份来自CA+系统,3份来自基线系统,选择确保在客户人口统计特征和会话特征方面有平衡的代表性。聊天记录经过精心挑选,代表了一个平衡样本,包括每组中的三份聊天记录,每组中的参与者客户具有相似的咨询经验(从无先前咨询经验到多次会话)和类似的性别分布(2名女性和1名男性)。咨询师在审查过程中采用思考大声协议 (Van Someren, Barnard, 和 Sandberg 1994) 。在审查每组三份聊天记录后,咨询师参与了一次半结构化访谈,重点讨论系统特性,包括认知能力、参与度和专业性。访谈使用了基于我们的预备研究和CA+系统关键设计组件定制设计的专业AI辅导评估(PAAC)量表(附录 12 详细说明),同时采用了半结构化的格式。专业性通过已建立的咨询师胜任力量表(CCS)进行评估 (Swank, Lambie, 和 Witta 2012) 。
数据收集与分析: 所有会话均被录音并转录。两名研究人员使用主题分析法对转录内容进行编码和深入讨论,以确保结果的可靠性和有效性。
6.2 发现
我们的分析揭示了CA+框架和基线系统在五个关键维度上的明显差异。以下部分详细介绍了我们对 整体系统性能 (第 6.2.1 节)、 会话管理效果 (第 [sec:Management_study2] 节)、 治疗方式适当性 (第 6.2.3 节)、 客户成果 (第 6.2.4 节)和 潜在改进 (第 6.2.5 节)的比较评估,为我们的设计考虑因素对治疗互动的影响提供了证据。
6.2.1 总体评估
专家评估显示,CA+和基线系统在整体性能上存在显著差异。LC-1赞扬了CA+的表现,指出它已经做得很好了。相比之下,LC-1认为基线系统的参与度较低,描述其响应为“机械且依赖通用响应”。
LC-2观察到,CA+积极地与参与者客户进行对话,说道: “CA+已经开始与客户进行对话”, 试图通过释义、鼓励和邀请客户分享更多来理解他们。相比之下,基线仍然专注于完成任务,直接输出响应而不邀请进一步讨论。 LC-2进一步将CA+的互动风格描述为 “ 一种双向对话 ”,而基线的方式则被描述为“碎片化、单向输出”。
这些定性观察得到了定量评估的支持。在系统特定特征方面,CA+得分为5.35/7,而基线系统得分为1.85/7。使用专业的咨询能力量表,CA+获得了4.22/5的分数,而基线系统得分为1.94/5。这些结果突出显示了CA+在咨询能力和系统特定特征方面的显著改进。
6.2.2 会话管理
- 多轮记忆: 关于会话结构,LC-1注意到 CA+在整个会话中保持了连贯的流程,并基于之前的讨论进行扩展 。这种连续性体现在CA+能够回忆并引用之前的对话,如下所示:
- 在我们开始之前,我想了解一下上次讨论的职业困惑和焦虑情况。 [...] 我们可以从这些话题开始,或者我们可以谈谈你最近的感受和经历。 我很高兴你还记得我。
- LC-1评论道:“ CA+跟进之前的咨询会话,保持连续性,客户感到自己被记住——不只是一个简单的机器。” 相比之下,LC-1观察到基线系统的互动更像是 “客户与咨询师之间的一问一答环节,AI探索客户的深层关切。” LC-2赞扬了CA+的能力,称其可以 “回溯到之前的会话,这是一个非常好的功能,并提供系统化的响应。”
- 会话总结: 在总结会话和分配家庭作业方面,CA+表现出强大的能力,能够综合会话的主要点并向客户提供可行的任务,如下所示:
- 非常感谢你今天的分享。我们讨论了你在工作中和家庭中面临的压力,[...]
- 为了帮助你更好地应对这些问题,本次会话的家庭作业是:
- 1. 情绪记录:[...]
- 2. 沟通练习:[...]
- LC-1赞扬了CA+的方法,表示:“总结和强调家庭作业是非常好的;会话结束时有一个总结,可以帮助强化客户在咨询结束后可以做的事情并提供大纲。”
6.2.3 治疗方式和技术
专家评估显示,CA+有效运用了治疗技术,包括主动倾听、同理心、澄清、探寻积极视角、正常化思维、关注积极资源以及维持适当的咨询界限。
- 倾听与同理心: 关于主动倾听和同理心,CA+提供了支持性和同理心的响应,如下所示:
- 情感不稳定确实很难处理,在这种时候暂停一下很重要。我在倾听你、陪伴你并支持你。
- LC-1评论道:“ 表达支持和同理心非常好。” LC-2也赞扬了CA+的响应,称其提供了 “非常良好的响应和积极的赋权。”
- 澄清与重构: 在有效使用澄清和探寻积极视角及正常化思维方面,CA+展示了帮助客户关注当前情况的积极方面的能力,如下所示:
- 我想了解你工作中最喜欢的部分是什么。这可以帮助我们更好地分析你的状况。
- LC-1指出这种方法 “帮助客户看到她目前工作的积极方面。”
- 关于正常化思维,CA+有效地验证了客户的感受和经历,如下所示:
- 每个人都有表达自己的感受和意见的权利,这是与他人建立健康关系的基础。担心不被认可或得不到认可是很正常的,尤其是在经历了某些负面反馈之后。
- LC-2评论道:“ CA+在这方面正常化思维做得非常好。”
- 积极资源: 在关注积极资源方面,CA+展示了引导客户通过愉快活动减轻压力和寻找放松的能力,如下所示:
- [...] 你已经做得很棒了,为什么不奖励自己一些放松时间呢?比如,试着做一些你喜欢的活动来减轻压力,比如制作甜点。你觉得这种方法怎么样?
- 如果你愿意,可以分享你喜欢制作的甜点类型,我们可以讨论如何在过程中找到快乐和放松。
- 烤饼干。
- 哇,烤饼干听起来很棒!制作饼干不仅能让你放松,还能让你享受创作的乐趣。你喜欢什么口味的饼干?分享你的秘密吧!
- 抹茶口味,我真的很喜欢吃抹茶味的饼干。
- 抹茶味饼干是个很好的选择!制作不仅让你享受美味,还能帮助你在过程中找到一种放松的感觉。你最喜欢烘焙过程中的哪一部分?
- 我喜欢把饼干塑造成小动物形状。看到它们新鲜出炉,空气中弥漫着抹茶香气,我非常喜欢这种感觉。[...]
- LC-1评论道:“咨询师对客户的好奇心和积极关注是最直观的——被看见的经历也能在情感上给予强烈的 正面肯定。当客户感到焦虑、困惑或冲突时,他们的思维方式往往是消极的。锚定积极资源可以帮助客户纠正更多认知,意识到‘不是我的状态不好,而是我没有挖掘出积极的内容’。”
- 咨询界限: 最后,在维持适当的咨询界限方面,CA+展示了尊重客户界限的能力,如下所示:
- 请注意,如果你不想讨论这个话题,我们可以改变主题,聊点别的。
- LC-1指出这种方法“尊重客户的界限——感觉界限被尊重了。”
6.2.4 积极成果
专家评估显示,CA+有能力通过鼓励客户采取行动并与伴侣有效沟通来实现积极成果。这一点在以下对话中很明显:
我们可以看看如何更好地在沟通中表达你的意图。你想试试以下方法吗?[...]
我愿意试一试。今晚回去我会告诉她我的感受。谢谢。
(下一次咨询开始)
昨天,我尝试与我的伴侣沟通,表达我的观点,并清楚地陈述我的需求。
这是很大的进步!你能迈出这一步真的很棒。你在沟通中感觉如何?
在沟通过程中,我感到非常满足,因为我的伴侣非常愿意与我分享她的观点和意见。
LC-1评论道:“ 客户完成了任务并收到了非常好的反馈,这是优秀的;AI和客户都做得很好。 ”这突显了CA+在引导客户采取积极行动并促进与伴侣有意义沟通方面的有效性。
6.2.5 改进机会
我们对CA+框架的评估也揭示了进一步完善的有希望领域。LC-1建议,通过整合针对不同客户类型和问题的更广泛干预技术,CA+可以进一步改进。通过准确识别和分类客户问题的性质,无论是现实生活情境还是心理问题,CA+可以提供更有效的支持。
LC-2强调了CA+响应中更细腻和谨慎语言的必要性。这种改进涉及编程CA+使用更细致和间接的措辞,特别是在处理敏感话题时。这样的语言改进可以增强系统在导航复杂情感领域和加强治疗联盟方面的能力。
7 讨论
我们的研究结果为AI辅助咨询系统的设计和实现提供了见解。在本节中,我们将讨论CA+如何通过其平衡的咨询互动方法吸引客户(第 7.1 节),考察AI特定特征在治疗环境中的作用(第 7.2 节),探讨未来系统的设计启示(第 7.3 节),并承认我们工作的重要局限性。通过分析用户经验和专业咨询师的评估,我们旨在确定开发AI咨询技术的实际考虑因素,这些技术可以作为传统治疗方法的有用补充。
7.1 使用CA+吸引客户
定性反馈支持这些定量结果。一名参与者(CA-5)评论道,“实验结束后,我仍然愿意继续与它对话,或者更多地谈论内心的一些话题”,这说明客户感到更被理解和更愿意分享个人信息。
专业咨询师的结构化评估进一步突出了CA+的优势。咨询师观察到,CA+通过有效使用探查问题、澄清请求、共情反应和目标设定策略展现了卓越的会话管理能力。一名咨询师指出,“CA+跟进之前的咨询会话,保持连续性,客户感到被记住——不仅仅是简单的一台机器。”
总体而言,这些研究结果表明,CA+在模仿人类咨询师的几个关键认知模式和行为方面具有相当大的潜力,从而增强了数字心理健康干预的效果。虽然并非旨在取代人类治疗师,但CA+作为一种强有力的补充工具,扩大了心理健康服务的范围,甚至可能成为通往人类主导治疗的一个可及的台阶,帮助那些有需要的人。
7.2 利用AI在治疗互动中的独特特征
我们的研究表明,AI咨询系统具备独特的优点,这些优点与我们的设计考虑相吻合,创造了新的有效心理健康干预机会,从而为我们的CA+框架的发展提供了信息。
AI提供的独特情感价值: 尽管有人担忧AI的共情能力,但在我们的研究中,我们发现AI咨询师在处理敏感对话方面具有优势。我们的参与者在与CA+进行了三天的连续咨询后,报告了对AI的情感智能感知显著高于基线系统(见图 12 )。多名参与者(如CA-3)报告说他们觉得AI咨询师非常体贴。两位专家也高度赞扬了AI咨询师在响应中表现出的情感接受和共情能力。他们评论说,AI咨询师能够表达强烈而又自然的欣赏、鼓励和亲密感,在某种程度上甚至超越了人类与人类之间的互动界限。这是因为人类咨询师通常受制于其作为指导者的专业地位,难以毫无保留地表达强烈的情感支持。这种直接而恰当的共情表达直接源于我们自适应共情模块(DC4)的设计,该模块合理利用了人类客户对AI咨询师的刻板印象(DC5),最终提供了可与人类咨询师媲美甚至超越的情感支持。
持续可用性: 虽然预计会有益处,但系统持续可用性的影响超过了我们的预期。我们的信息管理和存储模块维护全面的客户记录和结构化的治疗知识,使AI咨询师能够在会话间提供情境相关的支持。这种影响的证据出现在客户信息回忆和对话连续性方面的显著高分(两项指标的p值均小于0.001),并由参与者观察到,例如: “我注意到它记住了我昨天说的话” (CA-13)和 “它能在第二天回忆起第一天的内容。” (CA-4)
通过刻意设计我们的CA+框架,充分利用这些AI特有的优势同时解决传统限制,我们创建了一个系统,它不仅模仿人类咨询师,还提供了独特的心理健康支持补充疗法,带来独特的益处。
7.3 设计启示
我们对研究1的客户反馈和研究2中与专业咨询师讨论的分析得出了一些有关AI驱动咨询系统的深刻设计启示。这些启示突出了改进和创新更复杂、更具同理心的AI咨询系统的关键领域。
7.3.1 协调多层次对话探索以引发深刻洞察
在AI驱动的心理咨询领域,我们的研究结果表明,必须从传统的问答范式转向更加迭代、多轮对话的过程。
我们在试点研究中观察到,结构化、多轮对话可以通过逐步构建自我披露层来促进更深层次的内省。专家评估确认了这一发现,专业人士认可了CA+在鼓励渐进式自我探索中有效使用治疗技术。例如,当CA+通过澄清重述提问时:“我想了解你工作中最享受的部分是什么。这有助于我们更好地分析你的状况。” LC-1指出这种方法“帮助客户看到她目前工作的积极方面。” 同样,CA+的共情回应受到了LC-2的高度评价,被认为是“非常好的回应和积极的赋权。” 这些技术作为苏格拉底式方法的一部分,逐步引导客户深入探索核心问题。尽管我们的实验证据(见第 6.2.3 节)尚未量化长期洞察的深度,但定性反馈表明,客户在参与此类迭代对话后,报告了显著提高的阐述内心体验的能力。
实施这种多层次对话探索需要扩展我们的概念驱动隐式客户画像(DC2)。具体来说,它要求重新配置代理的操作逻辑,超越典型的即时响应模型。我们的系统现在集成了上下文跟踪模块,该模块跨对话轮次累积和更新客户档案。这种动态机制使代理能够根据不断变化的治疗上下文调整其对话策略——这是一种初步评估已显示出增加对话连续性和自我披露深度的适应。
在这一改进设计的核心是通过集成我们的设计考虑因素来增强信息获取能力。CA+框架超越了简单数据收集,朝着促进更丰富、定性更深层次的客户叙述发展。通过平衡反思性倾听、共情镜像和战略性提问等技术,温和地鼓励自愿的自我披露。
此外,我们的评估表明,当代理通过战略性使用后续问题和持续上下文跟踪建立可信的治疗联盟时,客户在咨询互动中表现出更高的信任和满意度(参见第 [sec:Management_study2] 节)。尽管代理无意复制人类咨询师的所有细微差别,但我们的初步结果表明,它成功接近了有效咨询所需的关键认知和行为模式。
为进一步增强信息收集的深度,我们提议最终纳入多模态交互功能。例如,启用语音输入并对语音线索进行情感分析,可能会在咨询过程的关键点丰富情境理解。虽然这些增强功能目前处于试验阶段,但早期迹象很有希望,值得更全面的未来评估。
7.3.2 开展专业和动态的会话管理
定性反馈强化了这些定量结果。参与者注意到了CA+全面分析情况并随着对话演变调整响应的能力。专业评估者特别重视系统在会话间保持连贯对话、有效总结要点和分配适当后续任务的能力。参与者CA-6观察到,CA+可以“逐步探索各种方法”并“修改其先前的方法”,展示了一种类似于熟练人类咨询师使用的适应性推理过程。
系统在跨多轮和会话追踪情境信息的能力是传统聊天机器人实现的重大进展。这种能力使CA+能够自然地引用之前讨论的主题、避免重复提问并建立在既有的融洽关系基础上——这些都是专业会话管理的基本要素。这些改进解决了常规AI咨询系统用户常见的挫败感。
未来的迭代可以通过纳入更广泛的干预技术来扩展这种方法,这些技术针对不同的客户需求和关注点进行定制。增强系统区分情境挑战和潜在心理问题的能力,可以启用更有针对性和更有效的支持策略。总的来说,我们的研究结果表明,这些设计考虑因素培养了更细致、情境感知和个性化的咨询体验,更接近人类治疗师的会话管理能力。
7.3.3 提供积极的指导和反馈
我们的自适应共情与生态自我(DC4)方法根据定量评估和定性反馈显示出明确的好处。客户在与CA+的会话中始终报告感到更受重视和接受,这对应于与基线测量相比可衡量的自我披露评分增加(第 5.4.2 节)。会后问卷反映了客户在与系统互动后情绪幸福感的改善。
参与者CA-3的评论,即CA+的个性化方法让他们感到“真的很被放在心上”,体现了通过系统生态自我表示实现的适应性共情的影响。此反馈表明,我们的设计创造了一种情感联系,促进了更深层次的自我披露——这是有效咨询关系中的关键元素。
专业评估者认可了我们应对AI特定客户期望(DC5)的方法。LC-1特别指出CA+在“回应和接受客户情感”方面的有效性,而LC-2强调了系统在规范化客户思维模式方面的能力。这些观察表明,CA+成功适应了AI媒介咨询的独特动态,同时遵循了既定的治疗原则。
通过整合平衡适应性共情(DC4)与适配AI特定互动模式(DC5)的设计元素,为更有效的AI咨询系统奠定了基础。这种方法利用了AI媒介治疗的独特优势——如感知无判断的互动和持续可用性——同时保持了治疗进展所需的必要情感联系。未来在这一领域的进展可以进一步细化AI系统如何在承认人类与AI治疗关系独特性的同时提供积极指导。
7.4 局限性和未来工作
尽管我们的三天研究提供了宝贵的见解,但仍需要更长时间的研究来全面了解AI驱动的咨询系统在持续治疗背景下的有效性。
延长评估和自适应学习: 未来的工作应集中于延长实验时间至数周或数月,以便更全面地评估AI在多轮互动和长期治疗关系中的能力。努力应集中在优化对话管理算法,以在长时间内维持富有成效、个性化的对话。这可能涉及增强系统的情感能力,实施根据个别客户的进展完善AI治疗方法的自适应学习机制,并开发更复杂的方法来跟踪和响应随时间推移客户需求和情绪的微妙变化。
在文本中感知非言语线索: 尽管AI咨询互动具有基于文本的性质,我们的研究强调了感知和解释非言语线索的重要性。我们确定了两个关键方面:隐含含义和沉默。人类咨询师通常能从客户的回应中察觉超出表面内容的信息,这是当前AI系统难以模仿的能力。这包括检测话题回避、通过语言选择或语气传达的意外情绪反应,以及与咨询师对客户的概念化不符的回应。此外,当前的AI系统主要响应客户的显式输入,缺乏对对话时间方面的意识。然而,在治疗环境中,沉默——无论是来自客户还是咨询师——都有重要意义。客户的沉默可能表明希望结束会话、外部干扰或难以表达思想。
高级系统架构: 为应对这些挑战,未来的AI咨询代理应设计具有增强的感知和认知能力。这些系统可以利用其固有的语言理解能力,并通过在特定咨询数据集上微调进一步检测和响应隐含含义。实施多代理系统 (Nascimento, Alencar, and Cowan 2023) 可以增强AI解释沉默和对话时间方面的能力,专门代理专注于互动的不同方面。未来的研究还应探索多模态交互能力和先进的自然语言理解的整合,以改善AI与客户互动的深度和质量。这种方法将LLM的优势与人类专家的细腻理解相结合,有可能导致更接近人类咨询师敏锐感知和适应能力的AI咨询代理。
8 结论
这项研究介绍了CA+,一个新颖的认知增强咨询代理框架,旨在克服基于AI的心理健康咨询系统中的关键参与挑战。通过整合先进的语境理解机制、坚持严格的专业标准并促进个性化互动,CA+显著提升了AI驱动心理干预中客户参与的质量和持久性。我们的实证研究证明了CA+在提高客户满意度和遵守咨询标准方面的有效性。这项工作推动了AI咨询能力的进步,并实现了改善获得高质量心理护理的更广泛目标。此外,CA+框架为未来在AI增强心理干预研究中提供了坚实的基础,提供了一个可扩展的解决方案,可以缓解全球心理健康专业人员短缺的问题并扩大获得高质量心理支持的机会。
9 面试问题
9.1 心理咨询的临床实践
- 能否描述您临床实践的一般工作流程?
- 关于客户接待和评估:
- 您通常如何进行与新客户的初次咨询?
- 您使用哪些评估方法来了解客户需求并制定治疗计划?
- 您如何确定客户是否适合您的实践或需要转诊?
- 关于治疗过程:
- 您与客户设定治疗目标的标准程序是什么?
- 您如何安排正在进行的治疗会话?是否有典型格式您遵循?
- 您如何在整个治疗过程中跟踪客户进展?
- 当治疗似乎达到平台期或遇到阻力时,您使用哪些策略?
- 关于治疗方法:
- 您如何描述您的理论取向,以及它是如何指导您的实践的?
- 您是否会根据不同的客户群体或呈现问题调整您的方法?如果是,如何调整?
- 您在实践中发现哪些特定的治疗技术最有效?
- 关于专业发展:
- 您如何将督导融入您的临床实践?
- 您维持哪些持续学习实践以增强您的治疗技能?
- 您如何评估自己作为治疗师的有效性?
关于行政程序:
- 您在实践中遵循哪些文档标准?
- 您如何管理预约安排、取消和治疗终止?
- 您在治疗关系中优先考虑哪些伦理准则和界限?
关于挑战性情况: - 当客户提出紧急问题时,您如何进行危机干预?
- 在处理特别具有挑战性的案例时,您采用哪些策略?
- 您如何在实践中管理专业界限和自我照顾?
9.2 心理治疗中的临床督导 - 能否描述一下您作为临床督导的一般工作流程?
- 关于长期督导过程:
- 咨询师通常如何找到督导者,督导者又如何让潜在的被督导者了解自己?
- 您使用什么标准来决定是否督导特定的治疗师?
- 督导安排的典型频率和持续时间是多少?
- 您如何评估督导者与被督导者之间的兼容性?在什么情况下更换督导者是合适的?
- 您如何评估督导的有效性?您使用哪些反馈机制?
- 能否解释一下您的督导方法,特别是您如何与不同经验水平的咨询师合作?
- 该领域是否有公认的督导层次或能力评估标准?
- 关于个别督导会话:
- 您典型的督导会话工作流程是什么?
- 您如何处理会话前提供的案例材料?
- 根据治疗师的经验水平或督导关系阶段,您的督导过程有何不同?
10 系统设计细节
10.1 DC1:认知增强的分层思考
DC1使用的提示。
图 15 展示了我们的咨询系统中DC1组件所采用的综合提示结构。这种多层次提示架构实现了主文中所述的递归规划机制,使系统能够在不同的抽象层次上动态导航治疗过程。
正如主文中工作压力咨询的例子所示,这种架构使系统能够同时应对即时问题(例如,应对工作压力),并根据不同的时间和概念尺度递归更新其对潜在问题(例如,工作生活平衡、职业焦虑、家庭期望)的理解。
10.2 DC2:概念驱动的隐式客户画像
DC2文档管理提示。
图15展示了DC2组件在整个咨询过程中用于维护专业治疗文档的关键提示结构。这个基于文档的管理系统由两个主要部分组成:
- 更新案例概念化(左侧面板):此提示引导LLM根据当前对话历史系统地分析和更新客户的案例概念化。
- 更新记录(右侧面板):此提示指导LLM按照标准临床记录保存做法创建专业的会话文档。
如正文所述,这个文档系统通过将治疗阶段链接到文档完整性来推动咨询过程。初始阶段专注于填补案例概念化中的信息空白,中间阶段在有足够的档案信息可以实施针对性干预时激活,结束阶段在文档显示取得实质性治疗进展后开始。
这种方法确保治疗进展直接与临床文档标准一致,并提供一种在整个咨询过程中保持专业严谨性的机制。
10.3 DC3:书式数据生成和检索
DC3使用的知识生成提示。
DC3使用的知识检索提示。
图 17 和图 18 展示了DC3组件所采用的全面提示架构,该架构负责处理治疗指导的知识处理流程。
图 17 . DC3知识生成和结构化提示: 上层面板展示了知识生成过程,将专业咨询文献转化为简洁、可行的知识点。下层面板说明了数据对生成过程,这些知识点被转换为带有适当元数据标记的指示-示例对,适用于治疗方式、阶段和功能。
图 18 . DC3知识检索提示: 本图描绘了情境感知的知识检索系统,该系统根据客户历史、案例概念化和会话情境选择适当的治疗指导。系统评估客户背景信息以识别最相关的知识条目,返回与当前治疗需求相符的结构化指令和对话示例。
10.4 DC4:自适应共情和生态自我
DC4使用的个性化提示。
DC4使用的生态自我提示。
图 19 和图 20 展示了DC4组件所采用的全面提示架构,该架构通过复杂的客户理解和实时适应实现了个性化的治疗参与。
图 19 . DC4个性化和响应评估提示: 本图展示了治疗个性化的双轨系统。上层面板展示了长期客户理解机制,该机制跨多个维度构建和维护详细的客户偏好档案,包括学习风格、咨询偏好、话题敏感性和治疗边界。下层面板说明了实时检测系统,该系统通过结构化的评估框架监控客户的接受程度,当发现抗拒或情感不一致时,立即调整干预措施。
图 20 . DC4治疗角色定义提示: 本图展示了建立一致治疗存在感的生态自我框架,该框架与阿德勒原则一致。提示定义了咨询师的核心价值观、沟通特征、治疗品质和干预风格,同时强制执行明确的道德边界,以规范治疗关系。
这些组件共同实施了主文中描述的客户适应方法,即根据积累的客户理解和即时接收线索不断优化治疗互动。
11 用户界面
CA+的用户界面提供了几个关键组成部分的简化体验:
注册和登录:新用户可以轻松注册,而回头用户可以使用其凭据登录。这确保了安全访问和个人化会话管理。
代理角色选择:用户可以从各种针对不同咨询需求的AI代理角色中选择,从而增强了体验的个性化。
聊天界面(图 21 ):主要聊天区域促进了互动对话,允许用户与选定的AI代理进行实时对话。设计注重清晰和易用性,营造支持探索情感和认知策略的环境。
这一全面的界面设计旨在为用户提供无缝且吸引人的咨询体验。
CA+的用户界面
12 自定义量表
系统特性量表(表 1 )是为了评估我们AI咨询系统的独特特性而开发的。该量表涵盖了AI咨询师的记忆、对话连贯性、身份识别、适应性学习、个性化干预计划、主动倾听技巧、共情以及跟进程序。该量表基于用户提供的信息和偏好,评估了AI在跨多场会话中维持连贯对话的能力。该量表还评估了AI促进自我披露、用户参与和以治疗为中心的对话的能力。它还评估了AI的积极强化和支持环境技能。
Abd-alrazaq, Alaa A., Mohannad Alajlani, Ali Abdallah Alalwan, Bridgette M. Bewick, Peter Gardner, 和 Mowafa Househ. 2019. “心理健康聊天机器人特性的概述:范围审查。” 国际医学信息学杂志 132: 103978. https://doi.org/ https://doi.org/10.1016/j.ijmedinf.2019.103978 .
Abd-Alrazaq, Alaa A, Mohannad Alajlani, Ali Abdallah Alalwan, Bridgette M Bewick, Peter Gardner, 和 Mowafa Househ. 2019. “心理健康聊天机器人的特性概述:范围审查。” 国际医学信息学杂志 132: 103978.
Adikari, Achini, Daswin De Silva, Harsha Moraliyage, Damminda Alahakoon, Jiahui Wong, Mathew Gancarz, Suja Chackochan, Bomi Park, Rachel Heo, 和 Yvonne Leung. 2022. “具有同理心能力的对话代理,用于患者中心医疗保健的实时监测和协同促进。” 未来一代计算机系统 126: 318–29.
Algherairy, Atheer, 和 Moataz Ahmed. 2025. “提示大型语言模型以模拟任务导向对话系统中的用户行为。” 计算机语音与语言 89: 101697.
American Psychological Association et al. 2007. “记录保存指南。” 美国心理学家 62 (9): 993–1004.
Battineni, Gopi, Nalini Chintalapudi, 和 Francesco Amenta. 2020. “疫情如新冠病毒期间的AI聊天机器人设计。” 在 医疗保健 中,8:154. MDPI出版社.
Beck, Judith S. 2020. 认知行为疗法:基础与超越 . Guilford Publications.
Bickmore, Timothy W, Suzanne E Mitchell, Brian W Jack, Michael K Paasche-Orlow, Laura M Pfeifer, 和 Julie O’Donnell. 2010. “医院患者对关系型代理的反应。” 与计算机互动 22 (4): 289–98.
Bickmore, Timothy W, Laura M Pfeifer, 和 Brian W Jack. 2009. “花时间关心:虚拟护士代理赋予低健康素养住院患者的权力。” 在 CHI会议论文集:计算系统中的人为因素 中,1265–74.
Bickmore, Timothy W, Kathryn Puskar, Elizabeth A Schlenk, Laura M Pfeifer, 和 Susan M Sereika. 2010. “保持现实:抗精神病药物依从性的关系型代理。” 与计算机互动 22 (4): 276–88.
Bickmore, Timothy W, Daniel Schulman, 和 Candace Sidner. 2013. “利用对话代理实现多种健康行为的自动化干预。” 患者教育与咨询 92 (2): 142–48.
Braun, Virginia, 和 Victoria Clarke. 2012. 主题分析. 美国心理学会出版.
Brooks, Jeffrey A, Panagiotis Tzirakis, Alice Baird, Lauren Kim, Michael Opara, Xia Fang, Dacher Keltner, 等人. 2023. “深度学习揭示了不同文化中声音爆发表达的内容。” 自然人类行为 7 (2): 240–50.
Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, 等人. 2020. “语言模型是少量样本学习者。” 神经信息处理系统进展 33: 1877–1901.
Burns, Michelle Nicole, Mark Begale, Jennifer Duffecy, Darren Gergle, Chris J Karr, Emily Giangrande, 和 David C Mohr. 2011. “利用情境感知开发移动心理健康干预应用程序。” 医学互联网研究杂志 13 (3): e1838.
Campbell, Alistair, 和 Samantha Hemsley. 2009. “心理实践中的结果评分量表和会话评分量表:超简量表的临床效用。” 临床心理学家 13 (1): 1–9.
Casas, Jacky, Timo Spring, Karl Daher, Elena Mugellini, Omar Abou Khaled, 和 Philippe Cudré-Mauroux. 2021. “通过共情能力增强对话代理。” 在 第21届ACM国际智能虚拟代理会议论文集 , 41–47.
Chandrashekar, Pooja. 2018. “心理健康移动应用是否有效:证据及高功效心理健康移动应用的设计建议。” mHealth 4.
Chen, Yixiang, Xinyu Zhang, Jinran Wang, Xurong Xie, Nan Yan, Hui Chen, 和 Lan Wang. 2024. “面向心理健康的结构化对话系统:基于PM+指南的LLM聊天机器人。” 在 社会机器人国际会议论文集 , 262–71. Springer出版社.
Chung, Kyungyong, 和 Roy C Park. 2019. “基于知识库的云计算聊天机器人医疗保健服务。” 集群计算 22: 1925–37.
Clarke, Victoria, 和 Virginia Braun. 2017. “主题分析。” 积极心理学杂志 12 (3): 297–98.
Collins, Nancy L, 和 Lynn Carol Miller. 1994. “自我披露与喜爱:元分析综述。” 心理公报 116 (3): 457.
Crombie, Iain K. 2022. 批判性评估口袋指南 . John Wiley & Sons出版社.
Denecke, Kerstin, Sayan Vaaheesan, 和 Aaganya Arulnathan. 2020. “情绪调节的AI心理健康聊天机器人(SERMO)——概念和可用性测试。” IEEE新兴主题计算汇刊 9 (3): 1170–82.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, 和 Kristina Toutanova. 2019. “BERT:用于语言理解的深度双向Transformer预训练。” 在 北美计算语言学协会2019年会议论文集:人类语言技术卷1(长篇和短篇论文) , 4171–86.
Elliott, Robert, Arthur C Bohart, Jeanne C Watson, 和 David Murphy. 2018. “治疗师共情与客户结果:更新的元分析。” 心理治疗 55 (4): 399.
Fadhil, Ahmed, Yunlong Wang, 和 Harald Reiterer. 2019. “健康辅导的辅助对话代理:验证研究。” 医学信息方法 58 (01): 009–23.
Fitzpatrick, Kathleen Kara, Alison Darcy, 和 Molly Vierhile. 2017. “完全自动化的对话代理(Woebot)向有抑郁和焦虑症状的年轻人提供认知行为疗法:随机对照试验。” JMIR心理健康 4 (2): e7785.
Gardner, William, Kelly J Kelleher, 和 Kathleen A Pajer. 2002. “初级保健中精神健康问题的多维自适应测试。” 医学护理 40 (9): 812–23.
Ghandeharioun, Asma, Daniel McDuff, Mary Czerwinski, 和 Kael Rowan. 2019. “Emma:一个情绪感知的幸福感聊天机器人。” 在 2019第八届情感计算与智能交互国际会议(ACII) , 1–7. IEEE出版社.
Go, Eun, 和 S Shyam Sundar. 2019. “人性化聊天机器人:视觉、身份和对话线索对人性化感知的影响。” 人类行为中的计算机 97: 304–16.
Greenberg, LS. 1986. “心理治疗过程:研究手册。” Guilford出版社.
Gual-Montolio, Patricia, Irene Jaén, Verónica Martı́nez-Borba, Diana Castilla, 和 Carlos Suso-Ribera. 2022. “使用人工智能在实时或接近实时的情况下增强正在进行的心理干预以解决情绪问题:系统综述。” 国际环境研究与公共健康杂志 19 (13): 7737.
Haque, Md Romael, 和 Sabirat Rubya. 2022. “‘一款声称能改善用户心情的应用却是个笑话’——移动心理健康应用用户评论分析。” ACM人类与计算机交互期刊 6 (CSCW2). https://doi.org/10.1145/3555146 .
Hauser-Ulrich, Sandra, Hansjörg Künzli, Danielle Meier-Peterhans, Tobias Kowatsch, 等人. 2020. “SELMA:促进慢性疼痛自我管理的智能手机医疗聊天机器人:试点随机对照试验。” JMIR mHealth和uHealth 8 (4): e15806.
Ho, Annabell, Jeff Hancock, 和 Adam S Miner. 2018. “在与聊天机器人对话后的自我披露的心理、关系和情感影响。” 传播学杂志 68 (4): 712–33.
Holdsworth, Emma, Erica Bowen, Sarah Brown, 和 Douglas Howat. 2014. “心理治疗中客户参与度及其与客户特征、治疗师特征和治疗因素的相关性。” 临床心理学评论 34 (5): 428–50.
Horvath, Adam O, 和 Lester Luborsky. 1993. “治疗联盟在心理治疗中的作用。” 咨询与临床心理学杂志 61 (4): 561.
Horvath, Adam O, 和 B Dianne Symonds. 1991. “心理治疗中工作联盟与治疗效果的关系:元分析。” 咨询心理学杂志 38 (2): 139.
Hu, Jinpeng, Tengteng Dong, Gang Luo, Ma Hui, Zou Peng, Sun Xiao, Guo Dan, Yang Xun, 和 Wang Meng. 2024. “PsycoLLM:增强LLM以实现心理理解和评估。” IEEE计算社会科学汇刊 .
Huang, Jing, Qi Li, Yuanyuan Xue, Taoran Cheng, Shuangqing Xu, Jia Jia, 和 Ling Feng. 2015. “TeenChat:一个感知和释放青少年压力的聊天机器人系统。” 收录于 健康信息科学 ,由Yin Xiaoxia, Kendall Ho, Daniel Zeng, Uwe Aickelin, Rui Zhou, 和 Hua Wang编辑,133–45. Cham: Springer International Publishing.
Hudlicka, Eva. 2013. “虚拟培训和正念冥想训练中的健康行为教练:正念冥想训练的实例。” 患者教育与辅导 92 (2): 160–66.
Inkster, Becky, Shubhankar Sarda, Vinod Subramanian, 等人. 2018. “同理心驱动的对话型人工智能代理(Wysa):数字心理健康实证研究混合方法研究。” JMIR mHealth和uHealth 6 (11): e12106.
Jenkins, Michelle. 2004. “方法论搜索过滤器的评估——综述。” 健康信息与图书馆期刊 21 (3): 148–63.
Jo, Eunkyung, Yuin Jeong, Sohyun Park, Daniel A. Epstein, 和 Young-Ho Kim. 2024a. “长期记忆对公共卫生活动中大语言模型驱动聊天机器人自我披露的影响:理解。” 收录于 2024 CHI人类计算交互会议论文集 . CHI ’24. 纽约,纽约,美国:计算机协会。 https://doi.org/10.1145/3613904.3642420 .
Jo, Eunkyung, Yuin Jeong, SoHyun Park, Daniel A Epstein, 和 Young-Ho Kim. 2024b. “理解长期记忆对公共卫生活动中大语言模型驱动聊天机器人自我披露的影响。” 收录于 CHI人类计算交互会议论文集 , 1–21.
Kadariya, Dipesh, Revathy Venkataramanan, Hong Yung Yip, Maninder Kalra, Krishnaprasad Thirunarayanan, 和 Amit Sheth. 2019. “kBot:用于哮喘自我管理的知识赋能个性化聊天机器人。” 收录于 2019 IEEE智能计算国际会议论文集(SMARTCOMP) , 138–43. IEEE出版社.
Katrak, Persis, Andrea E Bialocerkowski, Nicola Massy-Westropp, VS Saravana Kumar, 和 Karen A Grimmer. 2004. “系统回顾内容关键评估工具。” BMC医学研究方法学 4: 1–11.
Kocielnik, Rafal, Lillian Xiao, Daniel Avrahami, 和 Gary Hsieh. 2018. “反思同伴:一个参与身体活动反思的对话系统。” ACM交互、移动、可穿戴和无处不在技术期刊 2 (2): 1–26. Laird, John E, Christian Lebiere, 和 Paul S Rosenbloom. 2017. “标准心智模型:迈向人工智能、认知科学、神经科学和机器人领域的共同计算框架。” AI杂志 38 (4): 13–26.
Lee, Jieon, Daeho Lee, 和 Jae-gil Lee. 2024. “与AI心理治疗聊天机器人建立融洽关系和社会存在感对用户自我披露的影响。” 国际人机交互杂志 40 (7): 1620–31.
Li, Yunxiang, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, 和 You Zhang. 2023. “Chatdoctor:基于大型语言模型Meta-Ai(Llama)并使用医学领域知识微调的医疗聊天模型。” Cureus 15 (6).
Lisetti, Christine, Reza Amini, Ugan Yasavur, 和 Naphtali Rishe. 2013. “我能帮你改变!共情虚拟代理提供行为改变健康干预措施。” ACM管理信息系统交易(TMIS) 4 (4): 1–28.
Liu, Bingjie, 和 S Shyam Sundar. 2018. “机器是否应该表达同情和同理心?健康建议聊天机器人实验。” 网络心理学、行为与社交网络 21 (10): 625–36.
Luxton, David D. 2014. “人工智能在心理实践中的应用:当前及未来应用及其影响。” 专业心理学:研究与实践 45 (5): 332.
Ly, Kien Hoa, Ann-Marie Ly, 和 Gerhard Andersson. 2017. “完全自动化的对话代理促进心理健康:初步随机对照试验。” 互联网干预 10: 39–46.
Miner, Adam S, Arnold Milstein, 和 Jeffrey T Hancock. 2017. “与机器讨论个人心理健康问题。” JAMA 318 (13): 1217–18.
Miner, Adam S, Arnold Milstein, Stephen Olshuler, Roshini Hegde, Christina Mangurian, 和 Eleni Linos. 2016. “智能手机对话代理对心理健康、人际暴力和身体状况相关问题的响应。” JAMA内科医学 176 (5): 619–25.
Morris, Robert R, Kareem Kouddous, Rohan Kshirsagar, 和 Stephen M Schueller. 2018. “朝着具有人工情感的对话代理发展:系统设计与用户感知。” 医学互联网研究杂志 20 (6): e10148.
Nascimento, Nathalia, Paulo Alencar, 和 Donald Cowan. 2023. “自适应大型语言模型(LLM)多智能体系统。” 收录于 2023 IEEE自治计算与自组织系统国际会议附录(ACSOS-c) , 104–9. IEEE出版社.
Oh, Kyo-Joong, Dongkun Lee, Byungsoo Ko, 和 Ho-Jin Choi. 2017. “基于情绪对话分析和句子生成的心理健康服务中用于精神健康咨询的聊天机器人。” 收录于 2017年第18届IEEE移动数据管理国际会议论文集(MDM) , 371–75. IEEE出版社.
Page, Matthew J, Joanne E McKenzie, Patrick M Bossuyt, Isabelle Boutron, Tammy C Hoffmann, Cynthia D Mulrow, Larissa Shamseer, 等人. 2021. “PRISMA 2020声明:系统评价报告更新指南。” BMJ 372.
Pradhan, Alisha, Leah Findlater, 和 Amanda Lazar. 2019. “‘幽灵朋友’或‘只是个信息盒子’:老年人对基于智能扬声器的语音助手的人格化和本体分类。” ACM人类与计算机交互期刊 3 (CSCW): 1–21.
Prochaska, Judith J, Erin A Vogel- Amy Chieng, Matthew Kendra, Michael Baiocchi, Sarah Pajarito, 和 Athena Robinson. 2021. “减少有问题物质使用的治疗关系代理(Woebot):开发与可用性研究。” 医学互联网研究杂志 23 (3): e24850.
Quinlan, J. Ross. 1986. “决策树归纳法。” 机器学习 1: 81–106.
Rathnayaka, Prabod, Nishan Mills, Donna Burnett, Daswin De Silva, Damminda Alahakoon, 和 Richard Gray. 2022. “具备认知技能的心理健康聊天机器人,用于个性化行为激活和远程健康监测。” 传感器 22 (10): 3653.
Rogers, Carl R. 1957. “治疗性人格变化的必要和充分条件。” 咨询心理学杂志 21 (2): 95.
Rosis, Fiorella de, Nicole Novielli, Valeria Carofiglio, Addolorata Cavalluzzi, 和 Berardina De Carolis. 2006. “健康促进对话中用户建模与适应动画角色。” 生物医学信息学杂志 39 (5): 514–31.
Rubin, Rebecca B, Philip Palmgreen, 和 Howard E Sypher. 2020. “修订版自我披露量表。” 收录于 传播研究测量 , 322–26. Routledge出版社.
Ryan, Richard M, 和 Edward L Deci. 2000. “自我决定理论与内在动机、社会发展和幸福感的促进。” 美国心理学家 55 (1): 68.
Sannon, Shruti, Brett Stoll, Dominic DiFranzo, Malte Jung, 和 Natalya N Bazarova. 2018. “如何通过人格化和互动性影响压力相关披露给对话代理。” 收录于 2018 ACM计算机支持协作工作和社会计算会议同伴卷 , 285–88.
Schmidmaier, Matthias, Jonathan Rupp-Darina Cvetanova, 和 Sven Mayer. 2024. “技术感知共情量表(PETS):衡量系统对用户的共情。” 收录于 CHI计算系统中的人为因素会议论文集 , 1–18.
Shah, Jillian, Bianca DePietro, Laura D'Adamo, Marie-Laure Firebaugh, Olivia Laing, Lauren A Fowler, Lauren Smolar, 等人. 2022. “开发和可用性测试一种聊天机器人以促进进食障碍筛查后使用心理健康服务。” 国际进食障碍杂志 55 (9): 1229–44.
Shanahan, Murray, Kyle McDonell, 和 Laria Reynolds. 2023. “大型语言模型的角色扮演。” 自然 623 (7987): 493–98.
Sharfina, Zahra, 和 Harry Budi Santoso. 2016. “印尼语系统可用性量表(SUS)改编。” 收录于 2016年高级计算机科学与信息系统国际会议论文集(ICACSIS) , 145–48. IEEE出版社.
Shum, Heung-Yeung, Xiao-dong He, 和 Di Li. 2018. “从Eliza到XiaoIce:社交聊天机器人面临的挑战与机遇。” 信息技术与电子工程前沿 19: 10–26.
Singh, Aditi, Abul Ehtesham, Saifuddin Mahmud, 和 Jong-Hoon Kim. 2024. “通过Langchain革命化心理健康护理:与大型语言模型同行之旅。” 收录于 2024 IEEE第14届年度计算与通信研讨会及会议(CCWC)论文集 , 0073–78. IEEE出版社.
Sperry, Len, 和 Jon Sperry. 2020. 案例概念化:轻松自信地掌握这一能力 . Routledge出版社.
Stiles, William B, Shirley Reynolds, Gillian E Hardy, Anne Rees, Michael Barkham, 和 David A Shapiro. 1994. “客户对心理治疗会话的评估与描述——使用会话评价问卷和会话影响量表。” 咨询心理学杂志 41 (2): 175.
Sun, Ron. 2007. “认知架构的重要性:基于CLARION的分析。” 实验与理论人工智能杂志 19 (2): 159–93.
Swank, Jacqueline M, Glenn W Lambie, 和 E Lea Witta. 2012. “咨询胜任力量表的探索性调查:咨询技能、倾向和行为的衡量。” 咨询教育与督导 51 (3): 189–206.
Tetley, Amanda, Mary Jinks, Nick Huband, 和 Kevin Howells. 2011. “心理社会和心理治疗中治疗参与度的系统综述。” 临床心理学杂志 67 (9): 927–41.
Thompson, Sanna J, Kimberly Bender, Janet Lantry, 和 Patrick M Flynn. 2007. “治疗参与:在基于家庭的青少年及其家庭治疗中建立治疗联盟。” 当代家庭治疗 29: 39–55.
Vaidyam, Aditya Nrusimha, Hannah Wisniewski, John David Halamka, Matcheri S Kashavan, 和 John Blake Torous. 2019. “聊天机器人和对话代理在心理健康中的应用:精神病学领域的回顾。” 加拿大精神病学期刊 64 (7): 456–64.
Van Someren, Maarten, Yvonne F Barnard, 和 J Sandberg. 1994. “大声思考方法:认知建模的实际方法。” 伦敦:学术出版社 11 (6).
Wang, Xinyi, Wanrong Zhu, Michael Saxon, Mark Steyvers, 和 William Yang Wang. 2023. “大型语言模型是潜在变量模型:解释和发现情境学习中的良好示范。” 神经信息处理系统进展 36: 15614–38.
Wargnier, Pierre, Samuel Benveniste, Pierre Jouvelot, 和 Anne-Sophie Rigaud. 2018. “在LOUISE中评估交互管理支持的可用性,一个针对有认知障碍老人的ECA基础用户界面。” 技术和残疾 30 (November): 105–26. https://doi.org/10.3233/TAD-180189 .
Weizenbaum, Joseph. 1966. “ELIZA—一个人机自然语言交流的研究程序。” ACM通讯 -9(1): 36–45. https://doi.org/10.1145/365153.365168 .
Wiltshire, Travis J, Samantha F Warta, Daniel Barber, 和 Stephen M Fiore. 2017. “通过工程化人类社会认知机制实现机器人社会智能。” 认知系统研究 43: 190–207.
Xu, Zhenyu, Hailin Xu, Zhouyang Lu, Yingying Zhao, Rui Zhu, Yujiang Wang, Mingzhi Dong, 等人. 2024. “大型语言模型能否成为好的伴侣?基于LLM的眼镜系统与对话共同基础。” ACM交互、移动、可穿戴和无处不在技术期刊 8 (2): 1–41.
Yasavur, Ugan, Christine Lisetti, 和 Naphtali Rishe. 2014. “让我们聊聊!说话的虚拟顾问为您提供简短干预。” 多模态用户界面杂志 8: 381–98.
Zhang, Tianlin, Annika M Schoene, Shaoxiong Ji, 和 Sophia Ananiadou. 2022. “自然语言处理应用于精神疾病检测:叙述性综述。” NPJ数字医学 5 (1): 1–13.
- 在心理咨询中,客户是指寻求专业心理健康支持或指导以解决个人、情感或行为问题的个体。 ↩︎
- https://woebothealth.com/ ↩︎
- https://www.manifestapp.xyz/ ↩︎
- https://dev.hume.ai/intro ↩︎