我们都是创造者:生成式人工智能、集体知识与人机协同之路

Jordi Linares-Pellicer* ∗ 1 { }^{* 1} 1, Juan Izquierdo-Domenech † 1 { }^{\dagger 1} 1, Isabel Ferri-Molla ‡ 1 { }^{\ddagger 1} 1, 和 Carlos Aliaga-Torro § 1 { }^{\S 1} §1
1 { }^{1} 1 瓦伦西亚人工智能研究所 (VRAIN),瓦伦西亚理工大学,西班牙

2025年4月11日

摘要

生成式人工智能(GenAI)对传统的人类独特性观念,尤其是在创造力领域,提出了深刻的挑战。这些系统由基于人工神经网络(ANNs)的大规模基础模型驱动,在生成多样化的内容形式方面表现出惊人的能力,引发了关于作者身份、版权侵权和智能本质的激烈争论。本文认为,生成式人工智能不应被视为人类认知的模仿,而是一种替代智能和替代创造力的形式,其运行机制基于数学模式合成,而非生物理解或逐字复制。通过对比人工神经网络(ANNs)与生物神经网络(BNNs)的相似性和关键差异,可以发现人工智能学习的核心在于从海量数据集中提取和操作统计模式,这些数据通常代表了从互联网上抓取的集体人类知识和表达的结晶形式。这一视角复杂化了现有的版权盗窃叙事,并突显了在将人工智能生成的输出归因于单一来源或补偿原作者时所面临的实际和概念上的僵局,特别是在开源模型日益普及的情况下。本文主张不追求可能徒劳的监管或法律限制,而是倡导向人机协同的方向转变。

1

1 引言

复杂的生成式人工智能(AI)系统的出现,能够生成文本、图像、音乐、视频、代码等往往难以与人类创作区分开来的作品,引发了全球关于创造力未来和作者身份定义的讨论 [Garson, 2023]。基础模型通常基于复杂的人工神经网络(ANNs),能够在多个领域生成新颖的输出,似乎侵入了以往被认为是人类独有的能力范围。这项快速的技术进步造成了显著的社会摩擦,主要表现为围绕版权法、知识产权(IP)以及对创意职业的感知威胁的激烈争议 [Silberglitt et al., 2023]。艺术家、作家、音乐家和编码者都在应对AI模型在未经明确许可或补偿的情况下从互联网上抓取大量数据集进行训练所带来的影响,这些数据集往往包含他们的受版权保护的作品 [Samuelson and Lemley, 2024]。

这种紧张关系源于对这些AI系统如何运作的基本误解。公众甚至许多政策制定者和法律专家都对它们的内部机制缺乏了解,常常将其视为黑箱。本文认为,深入了解生成式AI背后的连接主义原则,包括它与生物神经网络(BNNs)的相似性和关键差异,对于建设性地导航当前的争论至关重要。我们主张生成式AI并不窃取或复制;相反,它通过从数据中学习到的模式进行合成,作为一种替代智能和替代创造力的形式运作,这与我们自己的人类大脑有许多相似之处。此外,这些模型学习的数据通常代表了一个庞大的集体人类知识和表达库,我们大多数人都对此有所贡献。

从这个角度来看,目前专注于对抗性的法律斗争和限制性法规的努力可能被误导,最终不切实际,特别是随着强大的开源模型[Rombach et al., 2022] 的兴起,这些模型正变得无处不在且易于使用。本文提出了一种向务实和协同方法的转变。将生成式AI视为一个强大的、尽管不同的创意伙伴,源自我们的集体数字足迹,使我们能够超越冲突走向合作。

本文将探讨生成式AI的技术基础,对比其学习机制与人类认知的不同。它将探讨版权困境的复杂性,审查现有法律框架的局限性和开源模型的影响。它将发展生成式AI作为集体知识和创造力体现的概念。最后,它将倡导一个以人机协作为重点的未来,利用这些工具增强人类能力,民主化创造力,并解决复杂的社会挑战。这一跨学科探索直接符合这一变革性技术从以人为本的角度来看所产生的深刻文化、社会、认知、经济、伦理和哲学影响。

2 生成式AI的连接主义本质:超越黑箱

为了有意义地参与生成式AI的社会影响讨论,必须超越简单的隐喻,理解其运行的基本原则。当代大多数生成模型的核心是基于人工神经网络(ANNs),这是一种计算结构,灵感来源于但不同于生物体中的生物神经网络(BNNs)[Garson, 2023]。

本质上,ANNs 是复杂的数学系统。基本单元,即人工神经元或感知器,并非生物细胞,而是一个数学函数,它接收数值输入,对其进行处理(通过加权和与激活函数),并产生数值输出。与BNNs使用的电化学信号不同,ANNs完全基于数值表示运行。“学习”过程涉及调整大量参数,这些参数是与人工神经元之间连接(权重)相关的数值。这些参数有效地反映了生物神经网络中的突触权重,尽管通过的是数学而非电化学机制,这清楚地表明了生物启发的存在,尽管实现方式存在根本差异 [Sharma and Johnson, 2024]。通过在大规模数据集上的训练,这些最初随机初始化的参数会通过迭代修改(例如,通过反向传播算法,功能类似于突触可塑性)来最小化误差并捕捉数据中的潜在模式。至关重要的是,训练后的参数体现了分布式的协同模式,尽管是在纯粹的数值领域内,但仍与人类大脑中形成的知识表示和见解类似。目标是让网络参数最终代表训练语料库中固有模式和关系的压缩和综合理解,编码在一个高维“潜在空间”内 [Zhang et al., 2024]。这种观点强调,生成式AI模型不应被视为单纯的数据库或存储系统,简单保留训练信息,而是神经突触可塑性的替代实现——数值系统通过权重的分布式模式编码学习到的信息,从而实现新内容的合成而非逐字检索。

尽管连接主义架构——由相互连接的处理单元组成的系统——为ANNs和BNNs之间提供了一个引人注目的类比 [Garson, 2023],但理解AI的能力和局限性时,两者的差异是深远且关键的(见表1)。BNNs具备令人惊叹的生物复杂性,涉及多种类型的神经元、复杂的神经化学信号、发育过程以及通过具身性和感官输入与物理世界的持续互动 [Kriegeskorte and Douglas, 2022]。相比之下,ANNs是数学抽象,通常基于从互联网抓取的静态数据集进行训练,缺乏真正的具身性、主观体验或人类通过感官互动获得的丰富终身情境学习 [Bechtel and Abrahamsen, 2020]。生物学习涉及多种形式的可塑性(经验依赖型、独立型、预期型)和结构变化 [Zhao et al., 2023],而ANN学习主要涉及在预定义架构内优化数值参数 [Richards and Lillicrap, 2020]。

表1:学习机制比较:生物神经网络 vs. 人工神经网络

特征生物
(BNNs)
神经网络人工神经网络
基本单元生物神经元(多类型,复杂结构)人工神经元/感知器(数学函数)
信号类型电化学脉冲数值
学习机制突触可塑性(赫布学习),结构变化,神经发生参数/权重调整(反向传播,梯度下降)
知识存储分布在突触强度和网络结构中分布在数值参数(权重,偏差)中
信息来源感官输入,具身经验,终身互动训练数据集(来自互联网的文本/图像)
上下文具身,情境化,生物,进化非具身,数学,算法
基础原理生物/电化学过程数学函数,统计

这种根本差异揭穿了推动版权辩论的常见误解。生成式AI模型不像硬盘那样“存储”图像、文本段落或音乐文件的副本。相反,它们存储代表从训练数据中提取的学习统计模式和关系的数值参数。当生成输出时,模型使用这些参数在学习分布内合成新的数据点,导航编码这些模式的复杂潜在空间 [Zhang et al., 2024]。这一过程基于学习到的模式进行合成和统计推理,而不是检索存储的原始内容。虽然过拟合或记忆现象可能会发生,模型确实逐字复制训练数据(尤其是如果数据高度重复或训练过度),但这些通常被视为缺陷或边缘情况,可能损害模型的泛化能力 [Carlini et al., 2024]。将AI理解为通过数学抽象学习和合成模式的系统,而不是数字复印机,对于随后关于创造力和版权的讨论至关重要。这表明我们面对的不是人工人类智能,而是一种独特的替代智能。

3 AI创造力作为替代认知

如果生成式AI通过在数学潜在空间内的模式合成而非人类般的理解和经验运作,我们应该如何概念化其创造输出?仅仅将其标记为“人工”可能会削弱其潜力或误解其本质。相反,将其视为源于替代认知的替代创造力提供了一个更具生产力的视角。

AI创造力源于模型在其学习到的潜在空间中导航的能力——这是从训练数据中提取的模式的高维表示 [Zhang et al., 2024]。通过在这个空间中的点之间插值、组合学习到的特征并应用随机过程,AI可以生成吸收的模式的新颖组合。这一过程可以产生看起来令人惊讶、审美愉悦或功能性有用的结果,满足通常与创造力相关的某些标准,如新颖性和价值 [Boden and Edmonds, 2023]。像生成对抗网络(GANs)或扩散模型这样的技术采用复杂的方法来完善这些生成的输出,推动合理合成的边界 [Bechtel and Abrahamsen, 2020]。

然而,这一过程与人类创造力有很大不同。虽然假设人类凭空创造(creatio ex nihilo)是一种谬误——人类创造力深受经验、文化、教育和与世界互动的影响——但人类认知涉及当前AI所缺乏的元素。这些包括具身经验、意识、主观感受、意向性和对远超AI模型训练数据的丰富上下文的访问 [Rodriguez and Smith, 2024]。人类创造力通常涉及基于更广泛的上下文打破既定模式,而AI创造力主要在从其数据中学到的模式内运作,尽管生成的是这些模式的新颖组合。尽管新兴技术如强化学习、开放性探索和自我改进旨在推动模型超越初始训练数据的限制,但它们的探索仍将从根本上区别于人类认知通过生活经验和与世界的感觉互动获得的丰富具身情境理解。

生成式AI和人类创作者的能力之间存在重要交集。两者都可以以新颖的方式组合现有元素,探索主题的变化,并生成符合某些美学或功能标准的输出。然而,也有显著的差异。人类拥有AI缺乏的深度理解、伦理推理和情境意识。相反,AI可以在人类无法达到的规模和速度上处理和合成信息,识别可能逃过个人感知的跨大数据集的模式 [Brynjolfsson and Benzell, 2023]。

因此,将AI的输出描述为替代创造力承认了其不同的起源和机制,同时认可了其潜在价值。它不是人类创造力的较低形式,而是一种不同的形式,源于数学优化和模式操控而非生活经验和生物认知。这种框架将焦点从取代转向互补性,表明AI的创造性潜力在于增强和与人类创造力合作,而非取代它 [Mammen et al., 2024]。

4 导航版权迷宫:集体输入,个体输出?

生成式AI能够生成类似于人类创作的输出,通常基于包含受版权保护作品的数据进行训练,这是引发激烈法律和道德冲突的核心问题 [Silberglitt et al., 2023]。权利持有者认为,在未经许可的情况下使用其作品训练AI模型构成大规模版权侵权,而AI开发者通常援引合理使用或其他特定法律例外作为辩护 [Samuelson and Lemley, 2024]。这一复杂情况因AI学习的本质、归属难度和开源模型的兴起而进一步复杂化。

许多权利持有者的核心论点是,AI训练涉及未经授权的复制,实际上是窃取创意作品以构建可能与原作者竞争的商业产品 [Silberglitt et al., 2023]。然而,正如之前所讨论的,标准的AI训练并非涉及存储作品副本,而是提取模式并将它们编码为模型参数。逐字复制(记忆)通常是无意的副产品,通常与数据重复或过拟合相关,并且一般被认为是有害的,因为它损害了模型的泛化能力 [Carlini et al., 2024]。这一技术现实挑战了简单的复制叙述,表明侵权分析必须更加细致。

在美国,AI开发者的首要辩护是合理使用 [Samuelson and Lemley, 2024]。其中心是转换性使用——AI对受版权保护材料的使用是否服务于与原作不同的目的或具有不同的特性 [Samuelson and Lemley, 2024]。开发者认为,训练AI是转换性的,因为目标不是复制输入,而是学习模式以生成全新的输出 [Ginsburg and Goldstein, 2024]。他们可能引用Google Books案的例子,扫描书籍以创建可搜索数据库被认为是转换性的 [Ginsburg and Goldstein, 2024]。然而,权利持有者反驳说,如果AI输出服务于与原作相同的市场(例如,AI生成的图像与库存照片竞争,AI文本与新闻文章竞争),那么使用是替代性的,而非转换性的,可能导致市场损害(合理使用的第四因素)[Browne and Shapiro, 2024]。最近的法院裁决给出了混合信号。最高法院在Andy Warhol Foundation v. Goldsmith案中的裁决强调,转换性目的必须与商业使用和市场替代进行权衡 [Ginsburg and Goldstein, 2024]。在Thomson Reuters v. Ross案中,地区法院拒绝了用于训练AI的合理使用辩护,认为AI的目的(法律研究)与原作目的过于相似,并可能损害AI训练数据许可市场的市场 [Samuelson and Lemley, 2024]。合理使用对生成式AI训练的适用性仍然高度争议且事实依赖。

欧盟AI法案包括透明度要求,例如要求提供者发布训练数据摘要,部分是为了帮助权利持有人执行退出权 [Rosati and Senftleben, 2024]。然而,退出的实际有效性和创建真正信息丰富但又不侵权的摘要的可行性仍然是重大挑战 [Samuelson and Lemley, 2024]。

归属和补偿的问题提出了几乎不可逾越的障碍。追踪特定AI输出(例如,一张图像、一段文字)回到影响其生成的个别训练数据点在计算上非常复杂,很可能在大多数情况下是不可能的 [Ginsburg and Budiardjo, 2023]。此外,版权法通常不保护艺术风格。虽然AI可以模仿风格,但这种模仿本身可能不构成侵权,就像人类艺术家可以受到他人风格的启发并采用这些风格一样。
Getty Images v. Stability AI、Andersen v. Stability AI 和 Authors Guild v. OpenAI 等诉讼正在处理这些问题,包括根据DMCA §1202提出的有关移除或更改版权管理信息(CMI)的索赔 [Ginsburg and Budiardjo, 2023]。

2022年发布的Stable Diffusion等强大开源生成模型的广泛可用性增加了另一层复杂性 [Rombach et al., 2022]。这些模型可以被任何人自由下载、修改和微调,通常使用私人数据集或特定风格。追踪由可能数千个衍生模型生成的输出血统变得不可能,使得基于训练数据出处的系统性补偿或执法方案完全不切实际。用户可以轻松地在线下使用非版权数据初始训练的开源模型与受版权保护的图像进行训练并生成新内容,使得针对原始模型创建者或最终用户的法律追索极其困难。

这一复杂的法律和技术景观表明,主要通过版权诉讼或专注于个别归属和补偿的监管寻求解决方案面临巨大的、也许是不可克服的障碍。

5 生成式AI作为集体知识的结晶

另一种视角重新框定了辩论,将生成式AI不仅视为一种技术工具,而且视为集体人类知识和创造力的体现或结晶。

核心理念,概括在短语“我们都是创造者”中——这是我们作者在整部作品中强调的一个中心原则——认为这些AI模型从根本上建立在人类的海量数字输出之上。我们认为,这种视角对正在进行的讨论至关重要,将生成式AI系统视为人类集体创造力和知识的复杂处理器——系统合成并转化我们共享的数字遗产成新形式。鉴于这一集体基础,我们主张生成式AI模型应广泛可及,以防止技术排斥。如果这些系统的能力源自人类聚合的知识和创造力,那么限制对其的访问可能会造成新的不平等形式。它们在促进学习、解决问题和创意表达方面的潜力表明,确保广泛可用性具有伦理必要性,特别是随着这些技术越来越多地融入教育、专业和创意领域。

用于训练大型基础模型的海量数据集通常是从互联网上抓取的,涵盖了网站、书籍、文章、图像、代码库和社会媒体内容[Ginsburg and Budiardjo, 2023]。这一数字语料代表了人类表达、知识、思想和艺术创作的前所未有的聚合,由数十亿人在数十年间贡献[Filimowicz, 2023]。当AI模型从这些数据中学习模式时,它实际上是从嵌入其中的集体智慧和创造力中学习[Tegmark and Russell, 2023]。AI模型成为一种机制,基于这一巨大的共享人类输入池,合成、重组并生成新输出。

这种集体知识视角对围绕所有权和补偿的辩论具有深远影响。如果模型从根本上源自集体、分散的输入,几乎所有参与数字领域的人(无论有意还是无意)都有所贡献,那么根据个人贡献分配所有权或计算公平补偿就变得实际上不可能且概念上棘手。如何可能追溯数十亿个输入对单个生成输出(一个标记、一个像素)的影响?如何量化每个贡献的价值——按数量、影响力还是原创性?训练数据的规模和互联性否定了传统的个人作者权和奖励模式。

开源AI模型的兴起进一步强化了这一集体维度 [Rombach et al., 2022]。像Stable Diffusion这样的模型一旦发布,就成为共享技术公共领域的一部分,任何人都可以使用、研究、修改和构建。这加速了创新,但也扩散了责任和控制,使得集中化的补偿或限制方案更加不可行。全球社区对这些模型的持续微调和适应进一步交织了个人和集体贡献。

通过这一视角看待生成式AI并不否定版权的有效性或创作者权利的重要性,但它表明现有的框架可能不适合这一新现实。它将焦点从个体盗窃转移到集体创造和技术中介的复杂动态上。它还带来了其他伦理层面,超越了版权。

6 向人机协同迈进:务实的前进之路

鉴于生成式AI的技术性质、法律环境的复杂性、集体输入的个体归属的不切实际性以及由用户需求和开放可用性驱动的不可阻挡的势头,纯粹的限制性或诉讼性方法注定会失败。一条更为务实且可能更有成果的道路在于拥抱人机协同,将这些技术视为强大的、互补的工具,能够增强人类能力。全球范围内获取这些模型有望带来重大的社会福利:在社会经济界限内民主化创造性和分析能力;通过广泛的计算辅助加速科学发现和创新;在资源有限的环境中提升教育机会;通过可访问的数字界面保存和振兴文化知识;并通过减少语言障碍促进跨文化交流。事实上,鉴于这些模型从根本上来说是基于和学习人类的集体智力和创造性产出,这种全球可及性似乎在伦理上有据可循。如果源材料代表了我们的共同文化遗产和集体知识,那么由此产生的技术难道不应该同样对所有人开放吗?通过确保包容性访问而非集中控制,我们可以潜在地利用这些技术应对集体挑战,同时尽量减少加剧现有技术和素养不平等的风险。

现实是,无论是专有还是开源的生成式AI模型,都广泛可用并已集成到众多工作流程和创意过程中。用户,从探索创意出口的个人到寻求生产力提升的专业人士,都渴望这些工具,并可能继续使用它们,如果专有系统变得过于受限或昂贵,他们会转向开源替代品。试图立法严格控制或强制实施普遍补偿方案面临着巨大的实际挑战,包括监控去中心化的开源使用和全球版权法的复杂性 [Samuelson and Lemley, 2024]。

因此,务实的方法涉及将重点从禁止和冲突转向合作和整合。这意味着认识到AI的替代智能和创造力与人类认知不同,但可能具有协同作用 [Brynjolfsson and Benzell, 2023]。AI擅长处理海量数据、识别模式、快速生成变体和自动化重复任务 [Brynjolfsson and Benzell, 2023]。人类则擅长情境理解、伦理判断、细腻沟通、情商和真正的概念性突破 [Brynjolfsson and Benzell, 2023]。

当这些互补优势结合时就会产生协同效应 [Chen and Williams, 2024]。在创意领域,AI可以充当不知疲倦的头脑风暴伙伴、初稿生成器、风格变化探索工具或生产劳动密集型方面的自动化手段,使人类创作者能够专注于更高层次的构思、完善和情感表达。这种合作有可能民主化创造力,赋予那些缺乏传统技能或资源的人将他们的想法变为现实的能力。

除了艺术之外,人机协同在科学、技术和复杂问题解决方面也具有巨大潜力 [Brynjolfsson and Benzell, 2023]。
AI可以在医学或气候科学等领域分析比人类快得多的海量数据,识别潜在药物候选物、预测疾病爆发或建模复杂的环境系统。然后,人类研究人员可以解释这些发现,设计实验,应用伦理考虑,并指导研究方向 [Mulgan and Straub, 2024]。这种协作方法可以加速发现并为紧迫的全球挑战提供解决方案。

这种务实的愿景并未忽视围绕AI的合法关切。就业流失、偏见放大、虚假信息、隐私和权力集中等问题需要持续关注,并发展稳健的伦理框架和治理结构 [Tegmark and Russell, 2023]。然而,这些框架应旨在引导AI的发展和部署朝着有益协作的方向发展,而不是试图阻止其进步或陷入基于可能过时范式的不可调和的知识产权纠纷。目标应是利用AI的潜力,同时减轻其风险,培养一个人类和替代智能共同工作的未来。

7 结论

生成式AI代表了一个重要的技术转折点,挑战了我们对创造力、智能和作者身份的理解。将生成式AI视为一种替代智能和创造力的形式,它擅长从集体人类知识中提取的海量数据集中综合复杂模式,并与我们自己的大脑有重要相似之处,为导航其社会影响提供了更准确的基础。

这一视角揭示了将传统版权框架应用于通过数学抽象从分散、集体输入生成的输出的深刻困难。追踪归属和实施公平补偿的实际和概念障碍,特别是在面对强大且可自由适应的开源模型时,表明以培训数据侵权为中心的法律斗争可能最终无法解决并且或许适得其反。

本文提倡的更务实和前瞻性的方法涉及接受这些工具的不可避免性,并专注于通过人机协同释放其潜力。通过认识到人类直觉、情境和伦理判断与AI在规模、速度和模式操控方面的能力之间的互补优势,我们可以培育出增强人类能力、民主化创意表达并加速科学和技术进步的合作。这需要超越对抗性思维,迈向整合和共同进化的思维。
这种范式转变并非没有挑战。关于偏见、劳动力流失、虚假信息和伦理治理的担忧是真实的,需要仔细考虑和积极解决。然而,试图扼杀这项技术或将它强行塞入不合适的法律框架中不太可能成功,并可能放弃其相当大的潜在好处。前进的道路在于发展稳健的伦理指南,促进AI素养,并培养利用这种强大的新形式替代智能——诞生于我们的集体过去——来构建更具创造力、生产力和公平性的未来的协作实践。这需要基于对生成式AI是什么和不是什么的清晰理解的社会对话。至关重要的是,明智前行需要解决这一新范式的可及性。如果生成式AI确实是集体人类知识的结晶,那么确保其益处的广泛和平等获取,特别是其民主化创造力和促进学习的能力,就有很强的伦理理由。防止这种力量的集中并弥合潜在的数字鸿沟应该是任何旨在实现真正的人机协同和社会进步的战略的关键组成部分。没有回头路;挑战在于明智地前进。

参考文献

William Bechtel 和 Adele Abrahamsen. 连接主义、复杂性与生命系统:人工神经网络与生物神经网络的比较。Minds and Machines, 30:361-386, 2020. doi: 10.1007/s11023-020-09533-8.

Margaret A. Boden 和 Ernest A. Edmonds. 人工智能与创造力。Arts, 12(2):76, 2023. doi: 10.3390/arts12020076.

Jonathan Browne 和 Robert Shapiro. 使用受版权保护作品训练AI被判非合理使用。Patterson Belknap Webb & Tyler LLP, 2024年3月。

Erik Brynjolfsson 和 Seth G. Benzell. 人类和AI何时最好一起工作——何时各自更好。MIT Sloan Management Review, 2023年9月。

Nicholas Carlini, Daphne Ippolito 和 Matthew Henderson. 大型语言模型中的不良记忆:综述。arXiv预印本, 2024.

David Chen 和 Sarah Williams. 通过人机协作提升研究结果:关键见解和策略。SmythOS, 2024年2月。

Michael Filimowicz. 生成式AI作为集体意识的媒介。Medium, 2023年8月。

James Garson. 连接主义。Stanford Encyclopedia of Philosophy, 2023年11月。

Jane C. Ginsburg 和 Luke Ali Budiardjo. 生成式AI的归属问题:来自美国版权法的观点。Journal of Intellectual Property Law & Practice, 18(11):796-807, 2023. doi: 10.1093/jiplp/jpad085.

Jane C. Ginsburg 和 Paul Goldstein. 生成式AI是否合理使用版权作品?纽约时报诉OpenAI。Kluwer Copyright Blog, 2024年2月。

Nikolaus Kriegeskorte 和 Pamela K. Douglas. 人工神经网络如何逼近大脑?Frontiers in Psychology, 13:970214, 2022. doi: 10.3389/fpsyg.2022.970214.

Christian E. Mammen, Michael Collyer 和 Robert Dolin. 创造力、人工智能与版权和专利法中对人类作者和发明者的要求。Berkeley Center for Law & Technology, 2024年1月。

Geoff Mulgan 和 Vincent Straub. 用于集体智能的人工智能:国家规模的研究战略。The Knowledge Engineering Review, 39:e1, 2024. doi: 10.1017/S0269888923000255.

Blake A. Richards 和 Timothy P. Lillicrap. 生物学对神经网络模型的认知功能的约束。Nature Reviews Neuroscience, 21: 642-658, 2020. doi: 10.1038/s41583-020-0364-5.

Ana Rodriguez 和 James Smith. 移动、适应和学习的AI:具身智能的未来。Columbia AI, 2024年1月。

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser 和 Björn Ommer. 使用潜在扩散模型进行高分辨率图像合成。IEEE/CVF计算机视觉与模式识别会议论文集 (CVPR), 第10684-10695页, 2022. doi: 10.1109/cvpr52688.2022.01042.

Eleonora Rosati 和 Martin Senftleben. 版权与AI训练数据——透明度的救援。Journal of Intellectual Property Law & Practice, 20(3):182-195, 2024. doi: 10.1093/jiplp/jpae009.

Pamela Samuelson 和 Mark A. Lemley. 生成式AI训练与版权法。arXiv预印本, 2024.

Priya Sharma 和 Mark Johnson. 认知神经科学与AI:解锁智能的未来。Open MedScience, 2024年2月。

Richard Silberglitt, Karen Lauterbach 和 John Villasenor. 人工智能对版权法的影响。RAND Corporation, 2023.

Max Tegmark 和 Stuart Russell. 哲学吃掉AI。MIT Sloan Management Review, 2023年10月。

Wei Zhang, Tianyi Chen 和 Xiang Li. Latentexplainer:使用多模态大型语言模型解释深度生成模型中的潜在表示。arXiv预印本, 2024.

Jing Zhao, Xin Liu 和 Yue Wang. 神经重塑:学习过程中人类大脑和人工智能的可塑性。Frontiers in Neuroscience, 17:1211442, 2023. doi: 10.3389/fnins.2023.1211442.

参考论文:https://arxiv.org/pdf/2504.07936


  1. *jorlipel@upv.es
    † { }^{\dagger} juaizdom@upv.es
    ‡ { }^{\ddagger} isfermol@upv.es
    § { }^{\S} § calitor@upv.es
    这种转变强调将生成式人工智能作为一种互补工具来拥抱,利用其替代性的创造性能力,同时结合人类的直觉、情境理解和伦理判断。社会可以通过这种方式解锁前所未有的创新水平,民主化创意表达,并解决各领域的复杂挑战。这种基于对人工智能能力和局限性的现实理解的合作方法,为导航这一技术范式转变提供了最有希望的路径。此外,认识到这些模型是集体人类知识的产物,也引发了对其可访问性的伦理考量;确保这些强大的知识传播和学习促进工具的公平获取,可能是防止社会鸿沟扩大并真正利用其集体利益潜力的关键。
    关键词:生成式人工智能、人工神经网络、创造力、版权、集体知识、人机协作、人工智能伦理、潜在空间、开源模型 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值